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Abstract
The numerical simulation of self-avoiding walks remains a significant
component in the study of random objects in lattices. In this review, I give
a comprehensive overview of the current state of Monte Carlo simulations
of models of self-avoiding walks. The self-avoiding walk model is revisited,
and the motivations for Monte Carlo simulations of this model are discussed.
Efficient sampling of self-avoiding walks remains an elusive objective, but
significant progress has been made over the last three decades. The model
still poses challenging numerical questions however, and I review specific
Monte Carlo methods for improved sampling including general Monte Carlo
techniques such as Metropolis sampling, umbrella sampling and multiple
Markov Chain sampling. In addition, specific static and dynamic algorithms
for walks are presented, and I give an overview of recent innovations in this
field, including algorithms such as flatPERM, flatGARM and flatGAS.
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1. Introduction

The simulation and enumeration of polymer conformations remains one of the most
fundamental problems in polymer physics (see, for example [27, 39]). Polymer statistics
and enumeration poses a set of challenging questions in areas as diverse as enumerative
combinatorics, statistics and statistical mechanics. In this review, I shall focus mainly on the
Monte Carlo simulation of polymer conformations as modelled by the self-avoiding walk,
which is the simplest model of a linear polymer in a good solvent.

The non-Markovian character of the self-avoiding walk is the source of many of the
difficult and unresolved mathematical problems it poses. The model is also related to certain
lattice field theories where it appears as a summation over (discrete) lattice paths, see for
example [143].

Self-avoiding walks (see figure 1) have been studied since the 1940s as the most basic
model of a linear polymer [38]. Significant theoretical progress in the mathematical description
of the model is due to applications of probability theory, rigorous constructive techniques,
scaling arguments and conformal field theory (in two-dimensional self-avoiding walk models).
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Figure 1. A self-avoiding walk in the square lattice. The walk starts at the origin and steps on
distinct lattice sites. The final vertex of the walk is trapped, since the walk cannot be continued by
adding another edge to its endpoint.

The field has advanced in major ways over the last 50 years, but the most basic question (the
determination of the number of walks of given length) remains unresolved.

The generation of exact series for lattice walks has produced remarkably accurate results
for critical exponents and connective constants [59, 61]. This approach has proven to be a
superior method for obtaining numerical data on walks, and recent advances have extended
series for walks to remarkable lengths in the square lattice [51–53, 82, 83, 148] and in the
cubic lattice [19] with the result that Monte Carlo simulations have lagged considerably in
accuracy when used to verify series results.

The results of series analysis should be considered against the backdrop that exact (but
non-rigorous) numerical values for certain scaling exponents of the self-avoiding walk have
been obtained in the square lattice by Coulomb gas [114] and conformal field theory [34]
methods. The series data have verified many of these exact values to remarkable accuracy and
perhaps even to a degree that cannot be obtained by Monte Carlo simulations as a matter of
principle. This may be so even in the cubic lattice, where series analysis (using a lace expansion
technique) has been used to provide good to excellent estimates for three-dimensional self-
avoiding walk exponents and the cubic lattice connective constant [19]. While Monte Carlo
may not be able to compete with these results, there is nevertheless the additional motivation
for the use of Monte Carlo simulations to verify the results obtained by analysing series data.

Monte Carlo simulations of self-avoiding walks are a collection of versatile and robust
algorithms. Many of these algorithms can be very generally applied to more general models
of walks in confined spaces or interacting walks as models of interacting polymers. Generally,
one should consider the Monte Carlo simulations of self-avoiding walks to be a method of last
resort, to be used primarily when no other method would do, or when there is the need for the
verification of (already known) results obtained by other means.

There are extensive results on the Monte Carlo simulations of interacting models of
self-avoiding walks in the physics literature. These methods have been used to simulate
models of polymers in dilute solution undergoing adsorption or collapse, amongst many other
phenomena [25, 26]. The use of classical scaling arguments [27] together with numerical
approaches, have had measured successes in describing these models [139, 149]. From a
numerical point of view these models are difficult and normally require the use of efficient
algorithms to estimate critical exponents and phase boundaries; see for example [44, 77].

The motivation for simulating lattice self-avoiding walks may originally have been found
in the polymer enumeration problem, but the field has matured since the first simulations
in the 1950s [132] to include not only a variety of algorithms and results, but also to pose
its own independent questions about the nature of the available algorithms. These questions
concern the efficacy of a given algorithm, including its ergodicity properties, its efficiency,
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the appropriate application of the algorithm, and so on. Some of these questions have been
addressed to various degrees in the literature; for example, see the review in [139] and chapter
9 in [100].

The invention of new Monte Carlo algorithms for sampling self-avoiding walks is also
a topic of independent research interest [139], and numerous ingenious methods have been
designed since the invention of the Rosenbluth method in 1955 [132]. Determining the
properties of a given method is itself a mathematical issue, as it frequently poses non-trivial
questions involving discrete time stochastic processes.

Generally, a numerical approach to the self-avoiding walk may be motivated by the need
to verify results obtained by other means, or to determine the numerical value of an exponent
or other constant associated with the model. If a Monte Carlo technique is used, then several
questions arise, such as (1) how to sample walks efficiently from a given (statistical) ensemble,
using appropriate data structures, (2) how to collect and measure data on the sampled walks
efficiently and (3) how to analyse data acquired by the numerical method. Each of these
questions has merit in its own right, and the efficiency of the simulation requires that a
satisfactory approach exists for each.

The Monte Carlo method for statistical sampling from a distribution was invented in
1949 [109], and its implementation via the Metropolis algorithm was demonstrated already
in 1953 [110]. Efficient Monte Carlo simulations of self-avoiding walks (as models of
polymers) started in 1955 with the invention of the Rosenbluth algorithm [132]. Subsequently
there have been significant progress; including new algorithms as well as several ‘dynamic
algorithms’ which have been used to simulate the dynamics of lattice polymer chains [149]
(rather than static properties). Many of these ‘Monte Carlo dynamics’ approaches have, on
closer examination, been found to be flawed in their application, but have inspired several new
approaches and algorithms since the 1980s, including the BFACF algorithm [4, 8] and the
pivot algorithm [92, 102]. The Rosenbluth method, on the other hand, has been generalized
to PERM [44] and to GARM [131].

The identification of the self-avoiding walk in a half-space as a stochastic Loewner
evolution with parameter κ = 8/3 (SLE-8/3) [93, 135] raises the new possibility of computing
properties of self-avoiding walks by simulating SLE-8/3. Steps along these lines have been
taken [87, 88], but while this is an exciting development, in this review I shall focus on the
direct Monte Carlo simulation of walks in the hypercubic lattice.

The calculation of scaling exponents remains a significant motivating factor for the
Monte Carlo simulation of walks, and in section 2 an overview of the basic scaling
ideas in models of walks is given. Interacting models of self-avoiding walks are briefly
reviewed as well, including collapsing walks, adsorbing walks and stretched and pulled
walks.

In section 3, the notion of a self-avoiding walk atmosphere [130] is introduced. Several
definitions are presented, and a short detour to an interacting model of atmospheric collapse
in walks is made. Particular definitions of walk atmospheres are important in constructing
Monte Carlo type dynamics on the state space of walks, and the discussion of algorithms will
be predicated on particular properties of atmospheric statistics.

The relationship between atmospheric statistics in the self-avoiding walk, and Monte
Carlo algorithms for walks, is explored in section 4, before the general outline of static and
dynamic Monte Carlo algorithms are presented. The Metropolis algorithm [110], umbrella
sampling [147] and multiple Markov chain Monte Carlo [41] are reviewed in the context of
the implementation of dynamic Monte Carlo sampling along a Markov chain. In addition, the
analysis of data and calculation of autocorrelation times for dynamic Monte Carlo algorithms
are reviewed.
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Figure 2. Self-avoiding walks of fixed length can be sampled uniformly along a Markov chain
by using the pivot algorithm [102]. This walk of length 500 edges is obtained in a Markov chain
realized by the pivot algorithm.

In sections 5–14, we review self-avoiding walk algorithms. Simple sampling in section 5
is technically the worst possible technique, and it is included as a baseline for comparison
with better algorithms. The Rosenbluth method in section 6 is far more efficient, but is clearly
based on the sampling technique of simple sampling. Dimerization is briefly reviewed in
section 7.

Further generalizations of Rosenbluth-style sampling include the scanning method
(section 8), PERM (section 9), GARM (section 10) and GAS (section 11). These are all
static Monte Carlo algorithms based on simple sampling and the Rosenbluth algorithm, but
with ingenious additions to improve sampling, such as pruning and enrichment (see [153]) of
states in PERM [44].

In section 12, the pivot algorithm is presented. This is a dynamic Monte Carlo algorithm
for sampling walks uniformly in the canonical (fixed length) ensemble. Grand canonical
sampling of walks from a Boltzmann distribution over lengths is introduced by the Berretti–
Sokal algorithm in section 13 or the BFACF algorithm (section 14).

In section 15, the application of Monte Carlo algorithms to lattice polygons is presented.
The application of GARM and GAS algorithms, and the pivot and BFACF algorithms are
reviewed.

The review is concluded in section 16 with a few observations and comments.

2. Self-avoiding walks

A lattice self-avoiding walk is a collection of distinct vertices {v0, v1, v2, . . . , vn} in a lattice
together with a set of edges which are pairs of vertices of the form {(vi−1, vi)}ni=1, where
vi �= vj if i �= j , and the vertices in each edge are nearest neighbour lattice vertices. The
Cartesian coordinates of a vertex vi in the walk are denoted by (X(vi), Y (vi), . . . , Z(vi))

in d-dimensions with X(vi) the first coordinate, Y (vi) the second coordinate and Z(vi)

the dth coordinate. See figures 1 and 2 for examples of self-avoiding walks in the square
lattice.

Normally, the vertex v0 is at the origin in the lattice, and this induces an orientation along
the walk. The length of the walk is the number of edges it contains. We shall only consider
walks in the d-dimensional hypercubic lattice Z

d , where d = 2 or d = 3 in most cases.
The most fundamental quantity in the study of the self-avoiding walk is cn, the number

of walks of length n starting in the origin. For small values of n, c0 = 1, c1 = 2d,
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Figure 3. Self-avoiding polygons of fixed length can be sampled uniformly along a Markov chain
by using the pivot algorithm [99]. This polygon of length 500 edges is obtained in a Markov chain
realized by the pivot algorithm.

c2 = 2d(2d −1), and so on, but it quickly becomes very difficult to determine cn. It is the case
that

dn � cn � 2d(2d − 1)n−1, (1)

so that cn grows exponentially with n. The number cn is known for n � 71 in Z
2 [83] and for

n � 30 in Z
3 [19], and is difficult to determine.

If a self-avoiding walk of length n + m is cut at its nth vertex, then two subwalks of
lengths n and m are obtained. The number of choices of a walk of length n + m is cn+m, but
the number of resulting subwalks is at most cncm. Thus, cn is a submultiplicative function on
N: cn+m � cncm. Together with the bounds in equation (1), this implies that the limit

μ = lim
n→∞[cn]1/n (2)

exists and d � μ � (2d − 1) [56, 58, 59].
Determining the growth constant μ is one of the most basic reasons for developing

numerical algorithms for walks. In low dimensions, exact enumeration of walks to determine
cn has given the best known estimates for μ in Z

2 [83] and Z
3 [19] from self-avoiding walk

data.
Kesten’s pattern theorem [89, 90] shows that the limit

lim
n→∞

cn+2

cn

= μ2 (3)

exists, but it is not known that the limit limn→∞[cn+1/cn] = μ exists. Is it known that cn � cn+1

[117], but there are few other proven properties of cn. Scaling arguments [27] provide a general
framework for examining cn and more general models of interacting walks.

Closely related to walks are polygons: these are self-avoiding walks which return to the
origin; as illustrated in figure 3. Polygons have a root vertex at the origin (this is the starting
and final vertices in the walk), but normally polygons are counted up to equivalences under
translations in the lattice. This removes the root, and pn is defined as the number of (unrooted)
polygons of length n steps in the hypercubic lattice. For example, p4 = 1, p6 = 2, p8 = 7 in
the square lattice, while p2n+1 = 0 in bipartite lattices such as Z

d .
As for walks, pn has been enumerated by computer to an astonishing n = 110 in the

square lattice [85]. It is a theorem [57] that the limit

μ = lim
n→∞[p2n]1/2n (4)

6
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exists (it is taken through even integers in bipartite lattices such as Z
d ). The value of the limit

is equal to μ; the growth constant of walks which is defined in equation (2) (see [57]).
It is known that the limit

lim
n→∞

pn+2

pn

= μ2 (5)

exists, a result which is due to Kesten [89, 90]; see [100] for a simpler proof.

2.1. Numerical estimates of μ

The numerical value of μ has been estimated in the square and cubic lattices using a variety
of different methods. Computing it to high precision remains a motivating challenge for the
development of numerical methods for the self-avoiding walk and for lattice polygons. Exact
enumeration and series analysis of walks (and polygons) as well as Monte Carlo simulations
have traditionally been used to estimate μ.

Series analysis for polygons [84, 85] gives μ in two dimensions to very high precision:

μ = 2.638 158 530 34 ± 0.000 000 000 10. (6)

Jensen [82] can be consulted for a slight improvement on this estimate.
Determining μ from self-avoiding walk data is not nearly this accurate. The best estimate

for μ obtained from self-avoiding walk data is

μ = 2.638 158 56 ± 0.000 000 03 (7)

as determined in [83], see [54] for additional results.
Monte Carlo estimates for μ have been made using grand canonical Monte Carlo

algorithms which sample self-avoiding walks from a distribution over their lengths. The
most well-known such algorithm is the Beretti–Sokal algorithm [9]. In [112], it is reported
that

μ = 2.638 164 ± 0.000 014, (8)

based on simulations using the Berretti–Sokal algorithm. The error bar is a combined 95%
statistical confidence interval and an estimated systematic error due to uncertainties in the
model. A more generalized implementation of the Berretti–Sokal algorithm can be found in
[113].

Canonical Monte Carlo simulations of self-avoiding walks (of fixed length) can be used
to determine μ as well. Results reported in [130] show that

μ = 2.638 16 ± 0.000 12, (9)

where an atmospheric statistic was used to estimate μ. A more recent simulation using an
atmospheric statistic for polygons gave the estimate

μ = 2.638 05 ± 0.000 24, (10)

see [78]. While these estimates do not compare well with the estimates based on exact
enumeration data, they do serve the purpose of verifying digits in the best estimates in
equations (6) and (7).

Less precise estimates for μ are available in three dimensions. Clisby et al [19] estimated
that

μ = 4.684 043 ± 0.000 012, (11)

by collecting series data on the cubic lattice self-avoiding walk using the lace expansion.

7
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Collecting atmospheric statistics on polygons with canonical Monte Carlo simulations
showed that

μ = 4.683 98 ± 0.000 16 (12)

in three dimensions [78]. Hara et al [64] reported an (unpublished) estimate μ = 4.683 907 ±
0.000 022 due to Guttmann.

2.2. Scaling and critical exponents in self-avoiding walks

Scaling arguments presume that cn and other mean observables computed for walks satisfy
scaling laws which involve certain critical exponents. The limit in equation (2) shows that
cn = μn+o(n). A scaling assumption for cn introduces a power-law correction to the expected
exponential term above so that

cn ∼ Aμnnγ−1. (13)

The entropic exponent γ has mean field value γ = 1 (this is also the random walk value, since
the number of random walks of length n is (2d)n), but γ > 1 in two and three dimensions. In
two dimensions conformal field theory gives the exact value γ = 43/32 [29], while numerical
simulations have been used to estimate that γ = 1.1575(6) in three dimensions [97]. The
mean field value γ = 1 is the exact value in five and higher dimensions [62, 63], and also in
four dimensions which is the upper critical dimension for self-avoiding walks, and where a
logarithmic correction modifies equation (13) to cn ∼ Aμn[log n]1/4.

The generating function of cn is called the susceptibility of the self-avoiding walk, and it
is defined by

χ(t) =
∞∑

n=0

cnt
n. (14)

The radius of convergence of χ(t) is tc = μ−1, and substitution of cn using the right-hand side
of equation (13) shows that

χ(t) ∼ A′

(1 − μt)γ
. (15)

Since γ > 0, the susceptibility is divergent as t ↗ μ−1.
The mean of an observable O over all walks of length n is defined by

〈O〉n = 1

cn

∑
|ω|=n

O(ω), (16)

where the summation is over all walks of length n counted by cn.

2.2.1. Metric scaling of walks. Metric quantities of a self-avoiding walk s with vertices
{v0, v1, . . . , vn} are observables which have units [length]. These include the span

S(s) = max
i,j

{|X(vi) − X(vj )|, |Y (vi) − Y (vj )|, . . . , |Z(vi) − Z(vj )|} (17)

or the average span

Sa(s) = 1

d

(
max
i,j

{|X(vi) − X(vj )|} + · · · + max
i,j

{|Z(vi) − Z(vj )|}
)
. (18)

The mean square radius of gyration is also a metric quantity defined by

R2(s) = 1

|s|2
∑
i,j

‖vi − vj‖2
2, (19)

8
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where ‖v‖2 is the Euclidean norm of the vector v defined by ‖v‖2
2 = [X(v)]2 + [Y (v)]2 + · · · +

[Z(v)]2 for a given vector v.
The mean span Sn ≡ 〈S(s)〉n and mean square radius of gyration R2

n ≡ 〈R2(s)〉n
are defined by taking the mean over all walks of length n: since n1/d � Sn � n and
n2/d � R2

n � n2, these metric quantities should scale as power laws with n:

R2
n ∼ CR n2ν and Sn ∼ CS nν, (20)

where ν is the metric exponent. The mean average span 〈Sa(s)〉n of walks of length n similarly
scales as 〈Sa(s)〉n ∼ CAnν .

It is possible to define other metric quantities, including the volume of the smallest box
containing the walk, the area of the image of the walk projected to lower dimensions and so
forth. All these quantities have dimensions length raised to an integer power, and they scale
as a power law with the length of the walk. Two other metric quantities which have received
attention in numerical simulations are

〈
R2

e

〉
n
, the mean square end-to-end distance between the

endpoints of a self-avoiding walk of length n, and
〈
R2

m

〉
n
, the mean square distance between a

vertex in a self-avoiding walk of length n, and the endpoints of the walk.
The ratios 〈R2〉n

/〈
R2

e

〉
n

and
〈
R2

m

〉
n

/〈
R2

e

〉
n

are dimensionless, and each approaches a
constant as n → ∞:

lim
n→∞

〈R2〉n〈
R2

e

〉
n

= 〈R2〉〈
R2

e

〉 , lim
n→∞

〈
R2

m

〉
n〈

R2
e

〉
n

=
〈
R2

m

〉
〈
R2

e

〉 . (21)

The limiting ratios are universal quantities (independent of the lattice). A conformal field
theory prediction of Cardy and Saleur [13] relates these limiting ratios in two dimensions as
follows:

246

91

〈R2〉n〈
R2

e

〉
n

− 2

〈
R2

m

〉
n〈

R2
e

〉
n

+
1

2
= 0. (22)

There are corrections to the scaling in the assumptions for cn and R2
n; these have been

determined by field theoretic calculations which suggest that

cn = Aμnnγ−1

(
1 +

a1

n
+ · · · +

b1

n�1
+

b2

n�1+1
+ · · ·

)
,

R2
n = CRn2ν

(
1 +

c1

n
+ · · · +

d1

n�1
+

d2

n�1+1
+ · · ·

)
,

(23)

where corrections of the form ai/ni are said to be analytic and bi/n�1+i are said to be confluent
[29]. The confluent correction exponent �1 above is the first in series of confluent correction
exponents �1 < �2 < · · ·. Least squares fitting of R2

n or cn to data to determine the exponents
ν and γ may in some cases require regressions which include analytic and confluent corrections
to scaling.

2.2.2. Fisher’s scaling law for walks. The number of walks from the origin to a lattice vertex
x is cn(x). For fixed values of x it is believed that

cn(x) ∼ Bμnnαs−2, (24)

where αs is the entropic exponent of lattice polygons. Normally, it is assumed that for fixed
x and n → ∞ the same asymptotic behaviour is seen for any x. Thus, by fixing x at the
origin so that cn(0) is the number of polygons of length n rooted at the origin, one sees that
cn(0) ∼ Cμnnαs−2. For unrooted polygons, this shows that

pn ∼ Bpμnnαs−3. (25)

For this reason, αs is often called the polygon entropic exponent.

9
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The generating function of cn(x) is the two-point function defined by

Gt(0, x) =
∞∑

n=0

cn(x)tn. (26)

The radius of convergence of Gt(0, x) is also given by tc = 1/μ. For values of t < tc, the
correlation length ξ(t) is defined by

ξ−1(t) = lim inf
|x|→∞

[−log Gt(0, x)

|x|
]

, (27)

where the inferior limit is taken over all sequences of points x such that |x| → ∞.
The correlation function defines a length scale, which should be the same length scale set

by other metric quantities. In other words, by determining the length scale set by the mean
span in a model of walks where walks of length n are weighted by tn, one gets

〈R〉t =
∑

n Sncnt
n∑

n cntn
∼ |log(μt)|−ν ∼ (1 − μt)−ν . (28)

Since the scaling of the correlation length will be the same as that of 〈R〉t , we conclude that

ξ(t) ∼ (1 − μt)−ν . (29)

Gt(0, x) (as a function of x) will be significant when |x| is comparable to the correlation
length ξ(t). Thus, there is a function g which decays asymptotically fast such that

Gt(0, x) ∼ 1

|x|d−2−η
g(|x|/ξ(t)). (30)

This assumption introduces a new scaling exponent η, which is the anomalous dimension.
The susceptibility can be estimated from Gt(0, x) by summing over x:

χ(t) �
∑
x∈Z

d

1

|x|d−2−η
g(|x|/ξ(t)) ∼ ξ 2−η ∼ (1 − μt)−(2−η)ν . (31)

Comparing this with equation (15) shows that

γ = (2 − η)ν. (32)

This is Fisher’s scaling relation.

2.2.3. Hyperscaling. Let cn1,n2 be the number of pairs of walk from the origin, of lengths
n1 and n2, such that these walks intersect one another at least in one vertex different from the
origin. It is believed that as both n1 and n2 go to infinity, then

cn1,n2 ∼ An1,n2μ
n1+n2n

2�4+γ−2
1 F(n1/n2) (33)

for some universal function F. This introduces the exponent �4. This exponent should not be
confused with the confluent correction exponent with the same symbol which was discussed
following equations (23).

The exponent �4 is thought to satisfy the hyperscaling relation

dν − 2�4 + γ = 0 (34)

in dimensions less than d = 5. To see this, argue as follows [100]: consider a walk of length
n from the origin which should occupy a volume V of size O(ndν). A second walk of length
n will intersect this walk if it is started from a vertex in V . This shows that

cn,n ≈ c2
nn

dν ∼ μ2nn2γ−2+dν . (35)

10
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A comparison of this with equation (33) gives 2�4 + γ − 2 = 2γ − 2 + dν and this simplifies
to the hyperscaling relation in equation (34).

Since the mean field value of �4 = 3/2, this relation fails in dimensions d > 4. One may
show that in high dimensions (d > 4) that �4 = 1 + γ /2 [100]. In d � 6 dimensions it is
known that �4 = 3/2 (see [100], this result is due to Hara and Slade).

The interpenetration ratio of a self-avoiding walk is defined by

�n = 2

(
d

12π

)d/2
[

cn,n

c2
n〈R2〉d/2

n

]
. (36)

�n measures the ‘degree of hardness’ of self-avoiding walks. The larger its value, the more
difficult it is for two walks starting at the origin (say) to stay in roughly the same volume of
space. By substituting the usual scaling relations for the quantities in �n, one finds that

�n ∼ n2�4−γ−dν . (37)

In the case that hyperscaling as in equation (34) is satisfied, �n → constant as n → ∞;
violations of hyperscaling will either take �n to zero or to infinity. Computing this quantity is
a sensitive test for hyperscaling [98].

The entropic exponent αs is believed to be related to the metric exponent ν via a
hyperscaling relation

2 − αs = dν. (38)

This relationship can only be proven by making significant assumptions, as pointed out in
[100].

Assume first that cn(x) has the same scaling behaviour for any fixed lattice site x as
n → ∞. The number of pairs of walks (s1, s2), each of length n starting at the origin which
avoid one another but which end in the same lattice site (say x) to form a closed self-avoiding
ring (or polygon) is equal to the number of polygons of length 2n rooted at the origin:

c2n(0) =
∑
x∈Z

d

∑
s1,s2

I (s1 ∩ s2 = {0, x}). (39)

In this expression, the summation is over all points x in the lattice, and over all walks s1 and
s2 of length n each from the origin and ending in x. The indicator function I (·) is one if the
intersection between s1 and s2 are their endpoints {0, x}, and zero otherwise.

Next assume that the main contribution to the summation above occurs when the distance
|x| is of order nν , then there are O(ndν) significant terms in the sum above.

The probability that two walks from the origin avoid one another is given approximately
by c2n

/
c2
n, and the main contribution to this comes from steps close to the origin. The

probability that the two walks from the origin and both ending in x both avoid one another is
the square of this probability,

[
c2n

/
c2
n

]2
. Thus, this probability scales as [n1−γ ]2.

The final assumption is that for |x| of order nν the probability that an n-step walk ends at x
is inversely proportional to the volume of the sphere of radius nν : thus cn(x) ∼ μnnγ−1n−dν .
Putting this together with the estimate in the previous paragraph shows that the summations
over s1 and s2 above scale as cn(x)

[
c2n

/
c2
n

]2 ∼ [μnnγ−1n−dν]2[n1−γ ]2 when x is of O(nν).
Thus, since we assumed that the main contributions to the summation over x comes from

x = O(nν), the number of significant terms is O(ndν), and one may estimate c2n(0) to be
given by

c2n(0) ∼ ndν[μnnγ−1n−dν]2[n1−γ ]2 = μ2nn−dν . (40)

On the other hand, it follows from equation (24) that c2n(0) ∼ μ2n(2n)αs−2. A comparison
with the last equation gives Josephson’s scaling law which relates the metric exponent to the
polygon entropic exponent.

11
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Table 1. Self-avoiding walk exponents.

d 2 3 Mean field

γ 43/32 [29] 1.1608(3) [43, 95–97] 1
ν 3/4 [32] 0.5877(6) [43, 98] 1/2
η 5/24 [32] 0.031(4) [14] 0
αs 1/2 [32] 0.237 ± 0.002 [48, 97] 0
�4 155/92 1.4603(12) 3/2
�1 3/2 [15, 83] 0.47 ± 0.025 [48, 97]

2.2.4. Numerical testing of scaling in the self-avoiding walk. The calculation of μ, critical
exponents and testing of scaling and hyperscaling relations are major motivating factors in
both the discovery of Monte Carlo methods for generating walks and the numerical simulation
of walks.

In table 1, some exact values of critical exponents calculated by conformal field theory
and Coulomb gas techniques are given in two dimensions [13, 29]. The estimates in three
dimensions were computed by Monte Carlo simulations for γ and ν, while η was determined
by the ε-expansion. Citations are given in square brackets.

In four and higher dimensions the exponents take on their mean field values, but in four
dimensions the scaling laws are modified by logarithmic factors, for example, it is expected
that

cn ∼ Aμn[log n]1/4 and R2
n ∼ CRn[log n]1/4 (41)

in four dimensions, since the mean values of γ and ν are γ = 1 and ν = 1/2.
The usual scaling assumptions for cn (equation (13)) and R2

n (equation (20) are modified
by analytic and confluent correction terms as in equation (23). These corrections must be
taken into account when data analysis is done in order to extract the values of exponents, and
every observable with a scaling law is subject to such corrections.

In two dimensions the exponent γ has been estimated using a variety of numerical
methods. Exact enumeration of walks in the square lattice shows that

γ = 1.343 745 ± 0.000 015 (42)

in two dimensions; see [83], and for more details [54]. Estimating γ by Monte Carlo means
is not nearly this accurate. Simulations in [130] give γ = 1.345 ± 0.004.

The entropic exponents have also been estimated in three dimensions in addition to the
field theoretic estimates in table 1. The estimate

γ = 1.1575 ± 0.0006 (43)

is given in [14]. Earlier estimates include γ = 1.1608 ± 0.0003 by Monte Carlo simulation in
[43] and γ = 1.161 ± 0.001 in [53]. Using the PERM algorithm on the Domb–Joyce model
gave the very accurate estimate γ = 1.1573 ± 0.0002, obtained by Hsu et al [68].

The values for �4 in table 1 were computed from the hyperscaling relation in
equation (34). The combination 2�4 + γ was computed from intersecting self-avoiding
walks in two and three dimensions in [98]. In two dimensions, the result is

2�4 + γ = 1.4999 ± 0.000 20. (44)

The entropic exponent of polygons, αs , has also been measured. Series analysis for
polygons in two dimensions [84, 85] give αs to a very high precision:

αs = 0.500 0005 ± 0.000 0010. (45)

12
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Slight improvements on this result can be found in [82]. Monte Carlo estimates of αs include
the simulation of polygons with an atmospheric statistic. This gives [78]

αs = 0.532 ± 0.027. (46)

The exponent αs has also been estimated from conformal field theory and Coulomb gas
methods, which give the exact value αs = 1/2 in two dimensions [114, 115].

In three dimensions (see [19]) the estimate αs ≈ 0.24 is given, while Monte Carlo methods
using an atmospheric statistic gives 0.248 ± 0.016 in [78].

The metric exponent ν has been computed in numerous studies. The two-dimensional
exact value ν = 3/4 is due to conformal field theory calculations [32]. This was tested by
exact enumeration studies [83] giving the estimate

2ν = 1.500 002 ± 0.000 003. (47)

The hyperscaling relation dν = 2 − αs appears to be valid for 2 � d � 4 for walks. In
two dimensions, the exact values for ν and αs in table 1 are consistent with hyperscaling in
two dimensions. The value of ν has also been determined by Monte Carlo methods in two
dimensions, for example, the estimate

ν = 0.749 63 ± 0.000 08 (48)

is given in [98]. Comparison with the result in equation (44) gives accurate support for the
hyperscaling relation in equation (34). In addition, comparing this result with equation (46)
shows that these results are consistent with the hyperscaling law in equation (38).

In three dimensions many more Monte Carlo studies have been done to measure ν. The
Flory value of ν = 3/5 [39] is not exact, and the Edwards model [36] (to sixth order in
the interaction parameter) gives the estimate ν ≈ 0.588 [22]. Series enumeration in three
dimensions [53] gave the estimate

ν = 0.592 ± 0.003. (49)

The pivot algorithm was used to estimate

ν = 0.5909 ± 0.0003 in [37], (50)

ν = 0.5877 ± 0.0006 in [98]. (51)

The PERM algorithm on the Domb–Joyce model gave the improved estimate ν = 0.587 65 ±
0.000 20 [68]. Grassberger [43] reported the high-quality estimate

ν = 0.585 ± 0.0015 (52)

by analysing data obtained by PERM. See [22, 37, 102, 129] for additional estimates of ν in
three dimensions.

Estimates of the limiting ratios in equation (21) can be found in [98], where the relation
in equation (22) is tested numerically. In two dimensions,

〈R2〉〈
R2

e

〉 = 0.140 264 ± 0.000 073,

〈
R2

m

〉
〈
R2

e

〉 = 0.439 605 ± 0.000 38, (53)

and in three dimensions

〈R2〉〈
R2

e

〉 = 0.1599 ± 0.0002. (54)

The results in two dimensions can be substituted into equation (22) for a test of the conformal
field theory prediction by Cardy and Saleur [13].
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Figure 4. (a) A self-interacting self-avoiding walk. Nearest neighbour pairs of vertices joined by
dotted lines are contacts. The number of contacts in this walk is 13. The energy of this walk is
c = 13. (b) An adsorbing walk in two dimensions. The walk adsorbs on the horizontal line by
interacting with it—each vertex of the walk in the adsorbing line is marked by a ◦ and is called a
visit. The energy of this walk is v = 4 (the origin is not a visit by convention).

The interpenetration ratio limn→∞ �n = �∗ (see equation (36) was similarly estimated
in [98], and �∗ was found to be finite in both two and three dimensions:

�∗ =
{

0.662 96 ± 0.000 43, in two dimensions,

0.2471 ± 0.0003, in three dimensions.
(55)

This is a sensitive test of the hyperscaling law in equation (34).
The confluent correction to scaling exponent �1 in two dimensions was predicted to have

values either �1 = 3/2 by Coulomb gas methods [114, 116] or �1 = 11/16 by conformal
invariance methods [134]. Exact enumeration studies suggest strongly that �1 = 3/2 [83]
and estimates using Monte Carlo methods [15] back this claim up. Some lower estimates
can be found in the literature in [24]. In three dimensions only effective values of �1 have
been used in Monte Carlo simulations to estimate other exponents. It is often assumed that
�1 ≈ 0.5 in regressions (see for example [121]). Numerical estimates for �1 can be found
in [98]: �1 = 0.56 ± 0.03, while Belohorec and Nickel estimated that �1 = 0.515 ± 0.007
in an unpublished Guelph University Preprint. Further estimates for �1 can be found
in [23].

2.3. Interacting models of the self-avoiding walk

A self-avoiding walk model of a linear polymer typically introduces energy terms in the
partition function of walks. For example, in a self-avoiding walk model of a self-interacting
polymer the number of nearest-neighbour contacts will be the energy of the walk; see
figure 4(a). This is a model of collapsing walks. Similarly, a self-avoiding walk model
of a polymer adsorbing on a surface would be a walk in a half-space with energy equal to the
number of vertices of the walk visiting the adsorbing surface (these are visits). Such a model
is illustrated in figure 4(b), and it is a model of an adsorbing walk.

The microcanonical density of these models is the function cn(m), which is the number
of self-avoiding walks of length n and energy m (where m is the number of nearest neighbour
contacts or visits in a given walk), see for example, figure 4. The partition functions of these
models are defined by

Zn(z) =
∑
m

cn(m)zm, (56)

where z = eβ is the activity or β is a fugacity conjugate to the energy.
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Figure 5. Energy (the mean number of visits) data for adsorbing walks in two dimensions,
generated by the pivot algorithm in a multiple Markov chain implementation consisting of
10 Markov chains spaced evenly along the log z-axis in [0, 1]. The curves are for walks of
lengths 30 edges, 90 edges, 120 edges and 200 edges, from the bottom up.

In some models (for example in a model of adsorbing walks) it is possible to prove that
the limiting free energy

F(z) = lim
n→∞

1

n
log Zn(z) (57)

exists, is convex and therefore differentiable almost everywhere [100]. The existence of
this limit is unknown for collapsing walks, and in those cases its existence is assumed as a
working hypothesis, or the limit is replaced by a limit superior. Critical points in these models
correspond to non-analytic points in the limiting free energy.

The generating function is defined by

G(t, z) =
∑
n�0

Zn(z)t
n (58)

and the radius of convergence of G(t, z) is related to the limiting free energy by

tc(z) = lim
n→∞ [Zn(z)]

−1/n = e−F(z) (59)

and in cases where this limit does not exist, it is replaced by the limit inferior.

2.3.1. Adsorbing walks. A positive self-avoiding walk in a half-space interacting with an
infinite line or plane as illustrated in figure 4(b) is a model of an adsorbing walk. Each vertex
of the walk in the adsorbing line or plane is a visit, and the partition function of the model is
given by

Zn(z) =
∑

v

c+
n(v)zv, (60)

where v is the number of visits of the positive walk to the adsorbing line or plane, and c+
n(v)

is the number of positive walks from the origin of length n making v visits [26, 27, 66,
106, 108].

In this model, it is known that the free energy F(z) = limn→∞[log Zn(z)]/n exists for
all finite values of z � 0 [60]. The free energy of this model is singular at a critical point zc

corresponding to an adsorption transition. In figure 5, the mean energy (number of visits to
the adsorbing plane) En(z) = d

d log z
log Zn(z) of an adsorbing walk in the two-dimensional

half-lattice with Z � 0 is plotted as a function of z. The number of visits remains low, but
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Figure 6. Collapsing two-dimensional walk specific heat curves Cn(z) for 10 � n � 80 in steps
of 10 by a micro-canonical implementation of GARM (see section 10). The partition function of
this model is given by Zn(z) =∑m cn(m)zm, where cn(m) is the number of walks of length n with
m nearest neighbour contacts. The algorithm produced an approximate enumeration for cn(m),
from which the specific heat curves were computed.

increases quickly starting at z ≈ 1.9. See section 2.6.1 for more details about the adsorbing
transition in this model.

2.3.2. Collapsing walks. An interacting model of walks with nearest neighbour contacts
weighted by z in the partition function is a model of collapsing walks [25]. In figure 4(a),
a walk is illustrated with nearest neighbour contacts denoted in dotted lines. Each contact is
assigned a weight z and the partition function of the model is

Zn(z) =
∑
m

cn(m)zm, (61)

where cn(m) is the number of walks from the origin of length n steps and with m nearest
neighbour contacts. It is not generally known that the limit F(z) = limn→∞[log Zn(z)]/n

exists in this model, but for 0 < z � 1 the existence of a limiting free energy is known [144].
This is a model of a collapsing polymer in a poor solvent: for large values of z the model

exhibits a phase of collapsed walks, and for small values of z a phase of expanded walks.
The critical point in this model occurs at the θ -point z = zc where linear polymers undergo a
‘collapse transition’ from an expanded coil form to a compact ball [27, 142].

In figure 6, the specific heat given by Cn(z) = d2

d log2 z
[log Zn(z)]/n is plotted as a function

of z for collapsing walks. There is a clear maximum in the curve, coinciding with increasing
fluctuations in the mean number of contacts when the walk goes through a θ -point from an
expanded to a globule conformation.

Walks at the θ -point are often said to be θ -walks, and exact values for the critical
exponents have been determined in two dimensions [31]; see section 2.6.2. At the θ -point
the self-repulsive forces between vertices due to self-avoidance and nearest neighbour self-
attractive forces between vertices cancel each other to first order. The walk is said to exhibit
θ -statistics at this point, which (to first order) is random walk statistics in d � 3 (but with
logarithmic corrections to scaling in d = 3).

2.4. Walks in confining geometries

A polymer molecule in solution in a colloid is confined to interstitial spaces between the
large colloid particles and loses entropy. This entropy loss results in a repulsive force on the
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Figure 7. A self-avoiding walk in a slab or slit geometry.

confining particles. This is the basic mechanism of steric stabilization of colloid dispersions
by a polymer adsorbed on the surfaces of the colloidal particles [21, 55, 111]. If the polymer
is attracted to the two confining surfaces then the induced force can be attractive under some
conditions. This is the basic mechanism of sensitized flocculation of colloids by adsorbed
polymer chains [27].

This stabilization and flocculation of colloids can be modelled by a self-avoiding walk
confined between two planes or plates as illustrated in figure 7.

In two dimensions, the model is a walk in a slit in the square lattice, and in three
dimensions, it is a walk in a slab in the cubic lattice. Vertices in the walk interact with the
bounding lines or plates in these models, and the most basic quantity is cn(v1, v2;w), the
number of self-avoiding walks of length n from the origin making v1 visits to the bottom
bounding line or plane, and v2 visits to the top bounding line or plane, of the slab Lw of width
w defined by

Lw = {x ∈ Z
d | 0 � Z(x) � w}. (62)

In this case Z(x) is the Z-component or dth component of the vertex x ∈ Z
d .

The partition function is given by

Zn(z1, z2;w) =
∑
v1,v2

cn(v1, v2;w)z
v1
1 z

v2
2 . (63)

Existence of the limiting free energy is known [73] for all z1 � 0 and z2 � 0:

Fw(z1, z2) = lim
n→∞

1

n
log Zn(z1, z2;L). (64)

Moreover, Fw(z1, z2) is a strictly increasing function of w. The entropic force is defined by
the discrete derivative of F :

fw(z1, z2) = Fw(z1, z2) − Fw−1(z1, z2) (65)

and it is known that fw(z1, z2) > 0 whenever z1 < 1, or z2 < 1, or both. In this case, there is a
repulsive force between the bounding lines or plates of the slit or slab [73]. For large values of
both z1 and z2 numerical simulations show that fw(z1, z2) < 0 [72], and it is a conjecture that
there is a force regime characterized by an attractive short ranged force between the boundaries
of the slit of slab [73].

For the case z1 = z2 = 1 the scaling of Fw with w was examined by Daoud and de Gennes
[21]. There are two competing length scales w and nν (where ν is the metric exponent) in the
model. The extensive free energy should depend on a ratio of these length scales. That is

Fn(1, 1;w) ∼ n−1g(nν/w), (66)

where the function g is assumed to be a power law, say g(x) = xy . Since Fn(1, 1, w) becomes
independent of n in the large n limit (and approaches the limiting free energy Fw(1, 1)) this
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Figure 8. Two interacting models of stretched and pulled linear polymers. (a) A walk in a slab
with vertices in both bounding plates of the slab is stretched if a force is applied to the top bounding
plane of the slab so as to move these plates apart or together. In this model, the first vertex of the
walk is fixed in the bottom bounding plane. This is a model of ‘stretched walks’. (b) A walk in a
half-space with first vertex fixed in the boundary of the space. A force applied to the last vertex of
the walk may pull this vertex away from the boundary, or push it towards the boundary. We also
call these ‘pulled walks’.

implies that y = 1/ν and hence that Fn(1, 1, w) ∼ w−1/ν . The (repulsive) force then scales
as

fw ∼ w−1−1/ν (67)

in this regime. This is expected to be the scaling form for all (z1, z2) less than the critical
adsorption point zc for adsorbing walks. Simulations in [72] provide strong numerical evidence
for this scaling in the repulsive phase in this model.

2.4.1. Stretched walks. In figure 8(a) a model of a stretched walk is illustrated. The walk
starts at the origin and is confined in a slab of width s with at least one vertex in the top
bounding plate or line of the slab. If the Z-span of the walk s is defined by

Sz(s) = max
i,j

{|Z(vi) − Z(vj )|}, (68)

where vi are vertices in s with Z-component Z(vi), then the model is constrained to have
Z-span equal to s. The partition function of stretched walks is given by

Zn(f ) =
∑

s

cn(s)e
f s, (69)

where cn(s) is the number of walks in the slab with Z-span equal to s, and this defines the
model of stretched walks [27]. The parameter f is an external force applied to the bounding
plates of the slab and may be either positive (stretching) or negative (compressing). The free
energy of this model is given by F(f ) = limn→∞[log Zn(f )]/n, and this exists [76]. There
is no phase transition in this model, but for large values of f the walk is stretched into a series
of blobs (the Pincus regime [124]); this has been confirmed rigorously for values of f which
are large enough [75, 76]; see [69] as well.

In figure 9, the mean Z-span (defined as the mean height or Z-span of the slab in
figure 8) is plotted as a function of f . For negative values of f the bounding plates are
squeezed together, and the mean Z-span is small. Increasing positive (or stretching) values of
the force increases this, starting when f ≈ 0.

2.4.2. Pulled walks. A model of pulled walks is illustrated in figure 8(b). A positive walk is
fixed at one endpoint in the origin, while the other endpoint is subjected to an external force
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Figure 9. The Z-span of stretched walks of length n = 1000 plotted as a function of the applied
force f . Negative forces correspond to pushing forces on the bounding plates in figure 8(a), while
positive forces correspond to stretching forces on the top plate in figure 8(a). These data are
collected by simulating stretched walks using a multiple Markov chain implementation of the pivot
algorithm with elementary moves consisting of both one-point and two-point pivots.

in the vertical direction. If h is the height of the last vertex of the walk above the plane Z = 0,
then the partition function of this model is given by

Zn(f ) =
∑

s

c+
n(h)ef h, (70)

where c+
n(h) is the number of positive walks from the origin with last endpoint at height h.

This defines a model of pulled walks. The parameter f is an external force applied to the
last vertex in the walk and may be either positive (pulling) or negative (pushing). The free
energy of this model is given by F(f ) = limn→∞[log Zn(f )]/n, and this exists [76]. Similar
to stretched walks, it is known that pulled walks have a Pincus regime for values of f � 0
sufficiently large [69].

In figure 10, the mean height of the last vertex of a pulled walk, defined by d
df

log Zn(f ),
is plotted as a function of f . For negative values of f this endpoint stays close to the bounding
plane, but it increases quickly with f for pulling (positive) values of the applied force, starting
at f ≈ 0.

2.5. Scaling in interacting models of walks

Phase changes in interacting models of walk correspond to singularities in the limiting free
energy F(z). The basic assumption is that the singular part of the free energy has a singularity
described by

Fs(z) ∼ |z − zc|2−α, (71)

where α is the specific heat exponent (and should not be confused with the polygon entropic
exponent αs).
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Figure 10. The height of the last vertex in a model of pulled walks (see figure 8(b)) of length
n = 2000 plotted against f . Negative values of f correspond to forces pushing the endpoint
towards the bounding plate at the bottom in figure 8(b), while positive forces correspond to forces
pulling the endpoint of the walk away from the bottom plate in figure 8(a). These data are collected
by simulating pulled walks using a multiple Markov chain implementation of the pivot algorithm
with elementary moves consisting of both one-point and two-point pivots.

The value of the exponent α may be dependent on whether z → z−
c or z → z+

c , in which
case the model is said to be asymmetric. Normally, α describes the divergence in the curvature
of F(z) at the critical point z = zc: this is the specific heat defined by

C(z) = d2F
dz2

∼ |z − zc|−α. (72)

The (metric) correlation length in the model is also a function of |zc − z|, and it typically
diverges as z → zc as a power law

ξ(z) ∼ (zc − z)−νθ , (73)

where νθ is the metric exponent of the model on approach to the critical point. Since the
free energy F(z) is a density, its singular part should scale ξ as Fs(z) ∼ ξd in d dimensions.
Substituting ξ into this and comparing it to equation (71) give the hyperscaling relation

2 − α = dνθ , (74)

which is Josephson’s scaling law. Testing the validity of this relation verifies the scaling
assumptions in equation (71).

The critical exponents take their mean-field values above the upper critical dimension dc

of the critical point, and logarithmic corrections are normally expected when d = dc; see for
example the introduction of [45] for an in-depth discussion of this point. Hyperscaling (see
equation (74) is violated for d > dc when the exponents assume their mean field values.

2.5.1. Finite size scaling. Finite size scaling is the scaling of the partition function Zn(z) as
n → ∞. Define the scaling field s = zc−z, then the free energy per vertex Fn(z) = 1

n
log Zn(z)

is a function of the compound variable nφcs

Fn(z) � 1

n
μd(n

φcs), (75)
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Figure 11. The tricritical point is located at the point marked •. At this point, the nature of the
singularity in G(t, z) changes from a simpler singularity along the critical curve tc(z) to a more
complicated singularity. The scaling of the generating function around this point is given in terms
of the ansatz in equations (80) and (81).

where μd(x) is a universal scaling function and φc is the finite size crossover exponent. Since
Fn(z) → F(z) ∼ s2−α as n → ∞ and s → 0 by equation (71), it follows that μd(x) ∼ x1/φc

as x → 0, and this shows that

2 − α = 1/φc. (76)

By Josephson’s law, this establishes the hyperscaling relation

2 − α = dνθ = 1/φc (77)

between the finite size crossover exponent and the metric exponent. In analogy with
equation (38) the metric exponent νθ is related to the scaling of clusters in the model as
the critical point zc is approached.

Critical scaling of the partition function is a generalization of the scaling ansatz in
equation (13). In particular, one expects

Zn(z) ∼ Aμn
zn

γ−1, (78)

where μz is now dependent on z, while the exponent γ should not change its value until the
model passes through a phase change at some critical value z = zc. At z = zc the value of the
exponent γ changes, and in some models it takes the ‘special value’ γ s at the ‘special point’
(or critical point). That is, it is generally assumed that

Zn(zc) ∼ Aμn
zc
nγ s−1 (79)

and the value of γ s has been estimated in a number of different models, in particular for
adsorbing and collapsing walks, see for example [45, 66]. These assumptions are particularly
valid below the upper critical dimensions dc of the critical point, but become modified by
logarithmic terms if d = dc.

2.5.2. Homogeneity of the generating function. Critical behaviour in interacting models
is best described by a tricritical ansatz [94]. The simplest implementation of a tricritical
scaling ansatz is based on the homogeneity of the generating function: define the scaling
fields g = tc(z) − t and s = zc − z, where tc is the critical curve defined in equation (59) and
schematically illustrated in figure 11.

The fields define a coordinate system (s, g) in which the singularities in G(t, z) lie along
a critical curve which passes through the origin in the sg-plane, as illustrated in figure 11.
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The nature of the singularity in G(t, z) changes at the tricritical point. For z < zc (or
s > 0) the generating function usually exhibits a simpler type of singularity along the critical
curve gc(s), such as a pole or a branch point, while for z > zc in the collapse or adsorbed
phase, the simpler singularity turns into a more complicated singularity (such as an essential
singularity). The curve of simpler singularities composes the λ-curve, while the curve of more
complicated singularities composes called the τ -curve.

Approaching the tricritical point in the gs-plane gives singular behaviour which depends
on the direction of approach. For example, along the s-axis the singularity is assumed to be
determined by the critical exponent 2 − αu, so that the singular part of the generating function
has behaviour given by

Gs(t, z) � Sλs
2−αu , along the s-direction. (80)

Consistent with this, the generating function is assumed to have singular behaviour described
by the critical exponent 2 − αt if the tricritical point is approached along the g-axis. Thus1

Gs(t, z) � Sλg
2−αt , along the g-direction. (81)

Along the λ-line, away from the tricritical point, the singularity in Gs is described by the
exponent 2 − α+:

Gs(t, z) � Sλ(tc(z) − t)2−α+ on approaching the λ-line. (82)

Under scaling of the axes g and t by �,Gs rescales as follows:

Gs(t, z) � �−dGs(�
ygg, �yt s) (83)

in d dimensions, where yg and yt are tricritical scaling exponents. If � is eliminated in this
relation by putting � = c · g−1/yg for some constant c, then

Gs(t, z) � gd/ygGs(c, g
−yt /yg s). (84)

Comparison with equation (81) indicates that along a curve g−yt /yg s = const, as g → 0, the
singular part of Gs must be given by g2−αt . Thus, it follows that

2 − αt = d/yg. (85)

The ratio yt/yg in the above describes the crossover scaling between the scaling fields g and
s, and we define the tricritical crossover exponent φ = yt/yg . This shows that

Gs(t, z) � g2−αt fs(g
−φs), (86)

where fs is a scaling function. By comparison to equation (80) the exponent 2 − αu indicates
scaling with respect to s; so we see that

Gs(t, z) � s2−αuf ′
s (g

−φs), (87)

where f ′
s (x) = x−(2−αt )/φ)fs(x) and

φ = 2 − αt

2 − αu

, (88)

on approach of the tricritical point at the origin of the gs-plane.
The shape of the λ-line in the gs-plane close to the tricritical point is described by the

exponent ψ (which we call the shift exponent):

tc(z) � tc(zc) + aλ(zc − z) + bλ(zc − z)ψ � bλs
ψ . (89)

1 The exponents −γu = 2 − αu and −γt = 2 − αt are frequently used in equations (80) and (81) instead. This
assumes that Gs(t, z) diverges at the tricritical point, which may not be the case in general.
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Along the λ-line the argument of the scaling function cannot grow unbounded; this implies
that g−φs ≈ const along this line, showing that the shape of the λ-line in the gs-plane is
approximated by gλ(s) ≈ const s1/φ . Comparison with equation (37) shows that

ψ = 1/φ. (90)

The (metric) length scales close to the tricritical point are determined by the correlation
length ξ which scales on approach of the tricritical point along the g-axis as

ξ(g) ∼ g−νt , (91)

where νt is a metric exponent. Rescaling of the g-axis by � will similarly rescale ξ(g) by
�. Since ξ and � are both metric quantities, ξ is proportional to � and by eliminating g from
equation (91), one sees that ξ ∼ �ygνt . Thus,

yg = 1/νt (92)

and therefore from equation (85) we obtain

2 − αt = dνt . (93)

Observe that νt �= ν and αt �= α so that this relationship is not the same as Josephson’s law
given above. Instead, νt describes the metric scaling of clusters at the tricritical point in the
model and relates this metric scaling to the thermodynamic tricritical exponent αt .

A similar argument introduces a second tricritical metric exponent 1/yt such that
2 − αu = d/yt .

In both finite size scaling and homogeneity of the generating function, we uncovered
crossover behaviour between the scaling directions described by equations (75) and (86). If
the scaling fields in finite size scaling are identified as s and 1/n, and s eliminated from
equation (86), then g and n can only be combined into a single variable which stays finite and
non-zero as g → 0+ or n → ∞ if φ = φc (where φc is the finite size crossover exponent).
This in particular gives the hyperscaling relation in equation (77) so that

2 − α = dνθ = 1/φ. (94)

This relates the thermodynamic tricritical crossover scaling exponent φ with the metric
exponent νθ of the model at the tricritical point and the specific heat exponent α.

2.6. Numerical testing of tricritical scaling

2.6.1. Adsorbing walks. Tricritical scaling has been verified numerically for adsorbing walks
in numerous studies. The crossover exponent for linear polymer adsorption is φ = 1/2 in all
dimensions. For example, numerical studies in [77] gives the estimates

φ =
{

0.501 ± 0.015, if d = 2,

0.5005 ± 0.0036, if d = 3.
(95)

The mean field value is also φ = 1/2 while conformal field theory predicts that φ = 1/2
in the two-dimensional polymer adsorption problem [12]. Other numerical estimates in the
literature scatter about 1/2, for example, φ = 0.530 ± 0.007 [108] and φ = 496 ± 0.004 [66],
φ = 0.50±0.01 [45], amongst many others (but older simulations gave estimates rather larger
than 1/2; see for example [106]).

The exponent γ assumes its self-avoiding walk value in the desorbed phase and is also
distinguished by the geometry of the walk: γ1 is the value of the entropic exponent γ in
equation (78) if only one endpoint is attached to the absorbing surface, while γ11 is the value
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when both endpoints are constrained to be in the adsorbing surface, forming a loop. A
remarkable relation involving γ1 and γ11 is Barber’s scaling relation [6], given by

2γ1 − γ11 = ν + γ. (96)

In two dimensions, the exact values in table 1 give the value 2γ1 − γ11 = 67/32 = 2.093 75.
A numerical test was done in [7]: γ1 = 0.945 ± 0.005, γ11 = 0.19 ± 0.03, so that 2γ1 −
γ11 = 2.08 ± 0.04.

In three dimensions numerical simulations in this phase in [66] give the estimates
γ1 = 0.679 ± 0.002 and γ11 = −0.383 ± 0.005, which combines with γ and ν to give
2γ1 − γ11 − (γ + ν) = −0.005 ± 0.006 (simulations in [43] give γ = 1.1608 ± 0.0003 and
ν = 0.585 ± 0.0015). The values of γ and ν in table 1 show that γ + ν = 1.7485 ± 0.0009,
consistent with these results.

The value of the adsorption critical point zc has also been estimated [77] in the square and
cubic lattices:

zc =
{

1.759 ± 0.018, if d = 2,

1.334 ± 0.027, if d = 3.
(97)

Other estimates for zc in the two dimensions are somewhat inconsistent: for example, in
[106] it is found that zc = 2.059 ± 0.012. In three dimensions, the value of zc has been
consistently shown to be close to the estimate above. For example, zc = 1.338 ± 0.005 [108],
zc = 1.3310 ± 0.0003 [66] and zc = 1.338 ± 0.065 [152].

Assuming that hyperscaling 2−α = dνθ = 1/φ holds in these models, one obtains α = 0
in both two and three dimensions. Estimates of the exponent 2 − αt in equation (81) have
been determined in [40]: in this case 2 − αt = −1.46 ± 0.004.

A slightly different implementation of this model is to count adsorbing edges (rather
than visits) in the adsorbing plane [45]. This model is in the same universality class, but the
location of the critical point is shifted away from the estimates above. In two dimensions the
best estimate of the critical point is zc = 2.036 ± 0.002 [45].

2.6.2. Collapsing walks. The θ -point and collapsing walks have received much attention
using Monte Carlo simulations in the literature [17, 45, 144, 145]; the situation is slightly
more complicated than for collapsing walks and this model is numerically more challenging.

The upper critical dimension for the θ -transition in walks is dc = 3. Thus, for d � 3
the model has mean-field critical exponents (for example, the crossover exponent takes value
φ = 0.5), with logarithmic corrections to scaling laws. Numerical data in three dimensions
are consistent with φ = 0.5 in three dimensions [144, 145].

In two dimensions there are two models for θ polymers. The first model is the θ model
described in section 2.3.2, while the second model introduced in [34] is referred to as the
θ ′ model (see also [20]). The θ ′ model is a model of polymers in a hexagonal lattice with
growing percolation clusters driving a collapse transition at the percolation threshold—these
are θ ′ polymers and numerous studies have been done to determine if they belong to the same
universality class as θ polymers [17, 35, 125, 138].

The crossover exponent φ for two-dimensional walks at the θ -point has been determined
by exact enumeration in [103]: φ = 0.90 ± 0.02, while other studies gave values which are
significant smaller, for example φ = 0.64±0.05 [128] (exact enumeration), φ = 0.53±0.004
[17] (Monte Carlo), φ = 0.48 ± 0.07 [133] (transfer matrix), φ = 0.66 ± 0.02 [107] (Monte
Carlo) and φ = 0.52±0.07 [136, 137] (Monte Carlo), amongst many other results. Generally,
this model is numerically difficult.
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The locations of the θ -point in two dimensions [40] and three dimensions [144, 145] have
been computed to be

zc =
{

1.93 ± 0.03, if d = 2,

1.3204 ± 0.0055, if d = 3.
(98)

These values are consistent with other studies, for example zc ≈ 1.93 [17], zc = 1.931±0.012
[107], zc = 1.95 ± 0.11 [103] and zc ≈ 1.90 [10], all in the square lattice.

The values of the exponent 2 − αt in equation (81) for collapsing walks have been
determined in [40]: in this case 2 − αt = −0.57 ± 0.02. The metric exponent was estimated
in [103]: ν ≈ 4/7 in two dimensions and ν = 0.57 ± 0.015 while γ = 1.075 ± 0.04 [138].

The upper critical dimension for collapsing walks is d = 3, and critical exponents
in d = 3 takes their mean field values, while scaling laws are modified by logarithmic
terms. Simulations in [46] suggest that these logarithmic corrections are additive, rather than
multiplicative at the θ -point.

Conformal field theory have also been used to determine exponents in the θ ′-model [34].
In two dimensions the exact values have been determined in [34]: φ = 3/7, γ = 8/7, ν = 4/7
and [150] γ1 = 4/7.

The special θ -point (not to be confused with the θ ′-point) is the (higher order) multicritical
point for collapsing polymers which are critical with respect to adsorption [150]. The model
is usually defined in terms of ‘surface’ and ‘bulk’ activities, but these can be readily put into
visits and contacts in the microcanonical ensemble.

The special values of γ1 and γ11 when z = zc (a the θ -point) have also been estimated
in [45]; in two dimensions γ s

1 = 1.46 ± 0.01 and γ s
1 − γ s

11 = 0.64 ± 0.01. This gives
2γ s

1 − γ s
11 = 2.10 ± 0.014 [45], in agreement with Barber’s relation since 67/32 = 2.094.

The exact value of γ s
1 is γ s

1 = 93/64 [49]. At the special point in d = 3 dimensions,
numerical simulations by Hegger and Grassberger [66] gave the values γ s

1 = 1.230 ± 0.002
and γ s

11 = 0.714 ± 0.006 so that 2γ s
1 − γ s

11 = 1.746 ± 0.008. The estimates in table 1 show
that γ + ν = 1.7485 ± 0.0009, consistent again with Barber’s scaling relation, this time at the
special point.

In contrast to the special θ -point, the special θ ′-point is a multicritical point in the θ ′

model, but critical with respect to adsorption. Exact values in two dimensions have been
determined for this model by Vanderzande et al [138, 150, 151] giving φs = 8/21, γ1 = 4/7,
while their exact enumeration study shows that γ1 = 0.57 ± 0.02 (see also [151]). Exact
enumeration in [40] gives φs = 0.40 ± 0.05.

It is also proposed in [122] that a surface tension term will further modify scaling of the
partition function in models where a phase is characterized by dense walks. A droplet analysis
suggests

Zn(z) ∼ A(μz)
nμ−nσ

1 nγ−1, (99)

where σ = (d − 1)/d and μ1 > 1, for z > zc in the dense phase. This scaling form is
also obtained for two-dimensional dense walks (with d = 2, and σ = 1/2) [6, 34], and the
exponent γ = 0.92 ± 0.09 was computed in [123] for a model of collapsing walks with a
dense phase. Numerical verification of the presence of surface tension terms in the collapse
phase in two dimensions can be found in [67].

2.6.3. Stretched and pulled walks. Simulations of stretched and pulled walks [47, 76]
demonstrate the appearance of a Pincus phase for positive (stretching or pulling) values of the
applied force f . Pulled walks have been proven to be ballistic for f > 0 with a non-zero
density of cut-planes which partition the walk into Pincus-type balls in [69], while a slightly
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Figure 12. The positive endpoint atmospheric edges of this walk in the square lattice are indicated
by the bold edges. In this example, ae

+ = 2. The last edge in this walk (denoted by the arrow)
is its negative atmospheric edge. In this case, the neutral endpoint atmospheric statistic ae

0 is the
number of ways in which that last edge can be removed and put back to obtain distinct walks. In
this example, ae

0 = 1.

weaker result for stretched polygons can be found in [75]. More numerical results can be
found in [76]. The simulations in [47] are of walks in a poor solvent and a transition from
collapsed globules to stretched conformations occur at a critical value of the applied force.

3. Self-avoiding walk atmospheres

In this section, we define the atmospheres of self-avoiding walks. These are best seen as
potential constructions that can be executed on a walk to increase or decrease its length, or
to change its conformation. There are a wide variety of possible atmospheres: the simplest
would be to consider the ways in which a walk can be extended by one edge by adding an edge
to its endpoint, or by inserting it somewhere along the walk. More complicated atmospheres
are defined by reflecting or rotating parts of a given walk to change its conformation. The
number of different atmospheres of a given class of a given walk is an atmospheric statistic,
and it may be closely associated with cn, as we shall see below. Atmospheres were defined in
[78, 130, 131].

3.1. Positive and negative atmospheres

A positive atmosphere of a self-avoiding walk is composed of all the ways in which a walk
can be extended by adding a fixed number of edges in a defined way. Similarly, we define
a negative atmosphere by the ways in which a walk can be shortened by removing a fixed
number of edges from it. Below, we define some particular atmospheres.

(1) Endpoint atmospheric edges. Suppose that s is a self-avoiding walk from the origin of
length n and last vertex vn. A positive endpoint atmospheric edge of s is a lattice edge
incident with vn which can be appended to s to create a new walk of length n + 1. The
size ae

+(s) of the positive endpoint atmosphere of s is the number of positive atmospheric
edges. The last edge in s is its negative endpoint atmospheric edge since its removal will
reduce the length of the walk by one edge. The size of the negative atmosphere is defined
to be ae

−(s) = 1 trivially, unless s is the trivial walk ∅ of length zero, with ae
−(∅) = 0.

The endpoint atmosphere of a walk is illustrated in figure 12. Observe that every positive
atmospheric edge becomes a negative atmospheric edge when added to the walk. Thus,
positive and negative atmospheres are reversible into one another.

A neutral endpoint atmospheric statistic can also be defined for a walk: this is the number
of distinct ways the last edge of a walk can be removed and then reattached to the walk to
give a new walk. For example, in the example in figure 12 the last edge can be removed

26



J. Phys. A: Math. Theor. 42 (2009) 323001 Topical Review

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..................................................................
........
........
........
........
........
........
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

O
.........
.............

..........................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

.........
.............

...........................................................................
........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

.........
.............

...........................................................................
........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

.........
.............

..........................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

.........
.............

...........................................................................
........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

.........
.............

...........................................................................
........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

.........
.............

..........................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

........
...........

.............................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

........
...........

.............................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

........
...........

.............................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

........
...........

.............................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

.........
.............

..........................................................................
.........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

........
............

.............................................................................
.........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

o
..
..
..
..
..
...................................

Figure 13. The plaquette atmospheres of a self-avoiding walk. Positive atmospheric plaquettes
are denoted by a +, negative atmospheric plaquettes by − and neutral atmospheric plaquettes by
O. In this example, a

p
+ = 11, a

p
o = 7 and a

p
− = 1.

and put back in only one way, so that ae
0(s) = 1 is the neutral atmospheric statistic of this

particular walk.
(2) Atmospheric plaquettes. See figure 13: if s is a self-avoiding walk of length n from

the origin, then three successive edges in a �-conformation is a negative atmospheric
plaquette. Conversely, if an edge in s can be replaced by three edges in a �-conformation to
create a new self-avoiding walk of length n+2, then the edges form a positive atmospheric
plaquette. Two adjacent edges incident at 90◦ with one another and bounding a unit square
with exactly two edges and three vertices in the walk is a neutral atmospheric plaquette.

The size of the negative atmosphere of s is denoted by a
p
−(s) and is the number

of occurrences of negative atmospheric plaquettes along s. The size of the positive
atmosphere of s is denoted by a

p
+ (s) and is the number of occurrences of positive

atmospheric plaquettes along s. The size of the neutral plaquette atmosphere a
p
o (s)

is similarly defined.
(3) Generalized atmospheric edges. Suppose that s is a self-avoiding walk of length n. An

edge in s is contracted by deleting it, and then concatenating the two subwalks incident
on its two endpoints. This may, or may not, result in a new walk.

Suppose a is an edge in s and s ′ is the object obtained by contracting a. Then a
is a negative generalized atmospheric edge if s ′ is a self-avoiding walk of length n − 1.
Negative generalized atmospheric edges are illustrated in figure 14. On the other hand, if
e is a lattice edge and s is cut in two subwalks s1 and s2 at a vertex vj , then e is a positive
generalized atmospheric edge if the object s1es2, constructed by concatenating e onto the
endpoint of s1 and translating s2 so that its first vertex is concatenated on the other endpoint
of e, is itself a self-avoiding walk of length n + 1. The size of the negative atmosphere of s
is denoted by a

g
−(s) and it is the number of edges which are negative atmospheric edges.

The size of the positive atmosphere of s is the number of positive atmospheric edges and
is denoted by a

g
+(s). Examples of positive generalized atmospheric edges are illustrated

in figure 15.

Other definitions for atmospheres can be added to the list, but in this review the focus
will be on the above. Positive atmospheric edges on a walk s of length n creates a linkage
between s and walks s ′ of longer length. We denote the linkage by (s, s ′), and observe that s ′
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Figure 14. The negative generalized atmosphere of a walk. The bold edges on the left are negative
generalized atmospheric edges. By contracting these edges the walks on the right-hand side are
obtained. The location of the contracted edge in each case is marked with a •. This walk has size
of its negative generalized atmosphere a

g
− = 3.
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Figure 15. The positive generalized atmosphere of a walk. The vertex marked with a • in the walk
on the left-hand side has two generalized atmospheric edges incident with it; one point in the south
direction and the other pointing in the east direction. By inserting an edge in the south direction at
this vertex, the top walk is obtained. If an edge in the east direction is inserted at this vertex, then
the walk at the bottom is obtained. The inserted positive atmospheric edges are indicated in bold.
This walk has size of its positive generalized atmosphere a

g
+ = 14.

can be obtained from s by adding positive atmospheric edges to s (and in the case of general
atmospheres, concatenate subwalks suitably) to obtain s ′.

Observe that in any linkage (s, s ′), the walk s can be obtained from s ′ by removing
negative atmospheric edges to reverse positive atmospheric moves which took s to s ′.

The two walks in each linkage (s, s ′) are, in fact, connected uniquely by specified positive
atmospheric edges in s which gives rise to specific negative atmospheric edges in s ′.

The linkages set up correspondences between walks of length n and n + 1 (for endpoint
and general atmospheres) and n and n + 2 (for plaquette atmospheres). This is illustrated in
schematically in figure 16. The number of linkages in this figures can be obtained either by
counting positive atmospheres of walks of length n, or negative atmospheres from walks of
length n + 1 (or n + 2 for plaquette atmospheres).

This shows that for endpoint atmospheres,

Number of linkages =
∑
|s|=n

ae
+(s) =

∑
|s|=n+1

ae
−(s) = cn+1 (100)

since ae
−(s) = 1 if s has length at least equal to 1. If the average size of positive atmospheres

of walks of length n is denoted by 〈ae
+〉n, then it follows from the above that〈

ae
+

〉
n

= cn+1

cn

. (101)
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Figure 16. Atmospheric edges or plaquettes set up linkages between walks of length n and n+1 (or
n+ 2). These linkages are denoted schematically by arrows above. An arrow from a walk of length
n (denoted by a •) to a walk of length n + 1 (denoted by a ◦) corresponds to a positive atmospheric
move, which can be reversed by a negative atmospheric move. By counting the number of linkages,
one obtains equations (101)–(103).

A similar argument shows that〈
a

p
+

〉
n〈

a
p
−
〉
n+2

= cn+2

cn

(102)

for plaquette atmospheres and〈
a

g
+

〉
n〈

a
g
−
〉
n+1

= cn+1

cn

(103)

for generalized atmospheres.
Since [cn+2/cn] → μ2 (see equation (3)), the ratio of plaquette atmospheres approaches

μ2 as n → ∞. More generally, the pattern theorem for walks and polygons [89, 90, 141]
states shows that there exists constants α+ and α− such that to leading order〈

a
p
+

〉
n

= α+n + o(n), (104)〈
a

p
−
〉
n

= α−n + o(n), (105)

and moreover, [α+/α−] = μ2.
Similar arguments can be made about the generalized atmospheric statistics for walks. In

this case, since [cn+2/cn] → μ2, it follows that[ 〈
a

g
+

〉
n+1〈

a
g
−
〉
n+2

][ 〈
a

g
+

〉
n〈

a
g
−
〉
n+1

]
= cn+1

cn

· cn+2

cn+1
→ μ2. (106)

In the case of endpoint atmospheres, it similarly follows that
〈
ae

+

〉
n

〈
ae

+

〉
n+1 = [cn+2/cn] → μ2

as n → ∞. In applications, one may assume that [cn+1/cn] → μ and estimate μ [130].

3.2. Self-avoiding walk neutral atmospheres

A neutral atmosphere of a self-avoiding walk is a rearrangement of edges in the walk which
do not change the length of the walk. As for positive atmospheres which increase length, or
for negative atmospheres which decrease length, there are several possible definitions and we
consider only a few here.
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Figure 17. The plaquette marked with ‘0’ is part of the plaquette neutral atmosphere of this walk.
By reversing the order of the edges ab in the left walk to ba, the walk on the right is obtained. The
total number of neutral plaquettes in the left walk is 4 and in the right walk is 2.
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Figure 18. The edges marked a and b are part of the generalized exchange neutral atmosphere.
By exchanging a and b in the walk on the left, the walk on the right is obtained. The total number
of pairs of edges forming the generalized exchange neutral atmosphere is 35 in the walk on the left
and 28 in the walk on the right.

(1) Endpoint neutral atmospheres. Suppose that s is a self-avoiding walk from the origin
of length n and last edge e. A neutral endpoint atmosphere of s is defined by deleting
e, rotating it into another orientation (possibly the same), and then reattaching it to s to
obtain a new self-avoiding walk s ′. This construction creates a linkage (s, s ′). Observe
that (s, s) is also a linkage. The number of endpoint atmospheres of s is denoted by ae

0(s).
Since (s, s) is a linkage, 1 � ae

0(s) � 2d − 1 in d dimensions. If ae
0(s) = 1, then s is a

trapped conformation.
(2) Plaquette neutral atmospheres. Suppose that s is a self-avoiding walk and that a and

b are two edges of s such that b follows a (that is ab is a subwalk of length two). If
a ⊥ b, then exchanging a and b may create a new walk s ′ which has ba as a subwalk.
This is illustrated for a particular walk in figure 17, and the reversal of the edges creates
a linkage (s, s ′) between the two walks. Observe that (s, s) is not a linkage in this case.
The number of plaquette neutral atmospheres of s is denoted by a

p

0 (s). There are walks s
such that a

p

0 (s) = 0, in this context.
(3) Generalized exchange neutral atmospheres. Suppose that s is a self-avoiding walk and

that a and b are two edges in s. Then exchanging a and b may create a walk s ′, see
figure 18, for an example. This exchange creates a linkage (s, s ′). Since s = s ′ whenever
a is parallel to b (as vectors), (s, s) is also a linkage. The number of generalized exchanged
atmospheres of s is denoted by ax

0 (s), and ax
0 (s) � 1 for any walk of length longer than

one.
(4) Pivot neutral atmospheres. Suppose that s is a self-avoiding walk and that v is a vertex

in s. Then v cuts s in two subwalks w0 and w1 such that w0vw1 = s. Without loss of
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Figure 19. An example of a pivot neutral atmospheric subwalk. By rotating the subwalk s1 starting
at the vertex v denoted by • through an angle 90◦ clockwise, the subwalk s′

1 on the right is obtained.

generality, suppose that w1 is shorter than w0. A pivot neutral atmosphere is defined by
taking the shorter subwalk w1, rotating and reflecting it by a symmetry operation which
leaves the lattice invariant, into a subwalk w′

1, to obtain the conformation w0vw′
1 = s ′.

If s ′ is self-avoiding, then this defines a pivot neutral atmosphere. We give an example
in figure 19. This construction is called a pivot and it creates a linkage (s, s ′). Observe
that (s, s) is also a linkage since the identity is also a symmetry operation leaving the
lattice invariant. The number of pivot neutral atmospheres of s is denoted by aP

0 (s) and
aP

0 (s) � 1 for any walk.

In general, neutral atmospheric moves are defined by changing the conformation of a walk
in its neutral atmospheres in a length-preserving way, as for example illustrated in figures 18
and 19. The examples above are by no means exhaustive.

3.3. Atmospheres and interacting models of walks

The atmospheres of self-avoiding walks define a set of models of walks with interacting
atmospheres. These models are defined in analogy with models of collapsed walks as in
figure 4: let cn(a+, a−, a0) be the number or walks of length n, from the origin, with positive
atmosphere of size a+, negative atmosphere of size a− and neutral atmosphere of size a0. A
given definition for the atmospheres can be used, and for each such definition, a different
model will be obtained.

The partition function in this model is given by

Zn(z+, z−, z0) =
∑

a+,a−,a0

cn(a+, a−, a0)z
a+
+ z

a−
− z

a0
0 . (107)

This is a function of three parameters (z+, z−, z0) and normally one would consider only one
of the parameters at a time. For example, Zn(z+, 1, 1) = Za+

n (z+) is the partition function on
a model of walks with positive atmospheric statistic weighted by z+.

In the case that endpoint atmospheric statistics are used in these models, one may show
that

lim
n→∞

1

n
log Zn(z+, z−, z0) = log μ (108)

independent of (z+, z−, z0).
If plaquette atmospheric statistics are used, then one would expect a smooth crossover

between walks with high values of the statistic to walks with low values of the statistic. Walks
with low value of the statistic have a deficiency of plaquette atmospheres. While there is in
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Figure 20. The average generalized positive atmosphere 〈a+〉n per edge plotted against z+ (and for
z− = z0 = 1). The curves displayed are for n = 30, 60, 90, . . . , 240. The left-most curve is data
for n = 30, and the right-most curve is data for n = 240. There is a sharp transition from walks
with small positive atmospheres to walks with large positive atmospheres close to z+ = 1. These
data are collected using the GARM algorithm in section 10.

this model no evidence of a transition, the limiting free energy is dependent on the parameters
(z+, z−, z0). Proving that the free energy exists for all values of (z+, z−, z0) is an open question
in this model as well.

For generalized atmospheric statistics this model is analogous to a model of collapsing
walks. Consider first the model Zn(z+, 1, 1). For small values of z+ < 1 the walks in this
model appear to be in a ‘polygon phase’: generally walks with small values of a

g
+ have their

endpoints close together as illustrated in figure 21.
It is not known that the free energy

Fg
+ (z+) = lim

n→∞
1

n
log Zn(z+, 1, 1) (109)

exists as a limit [3]. Numerical simulations show a sharp transition in this model at a critical
value of z+. Data for the average positive atmosphere per edge plotted against z+ are displayed
in figure 20. Similar data can be collected for the model Zn(1, z−, 1).

The collapse phase in this model is also characterized by walks with small negative
atmospheres, and they appear polygon-like as illustrated in figure 21(a). It is not known that
the free energy

Fg
−(z−) = lim

n→∞
1

n
log Zn(1, z−, 1) (110)

exists as a limit [3]. Similar to the positive generalized atmosphere case above, there is a sharp
transition in this model.

Numerous other interacting models can be defined in this way by using an atmospheric
statistic. In the generalized atmospheric statistic models, it appears that the collapsed phase is
composed of walks with endpoints near each other, so that this phase may be called a ‘polygon
phase’.

4. Monte Carlo methods

Monte Carlo sampling of walks involves the statistical sampling of states from a distribution
over a state space with the purpose of estimating expected values of observables computed
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Figure 21. (a) A walk with generalized positive atmosphere a
g
+ = 0. Generally walks with

small positive atmospheres have endpoints closed together. Walks with small negative generalized
atmospheres appear similarly to have their endpoints close together. This walk has a

g
− = 2.

(b) A walk with large generalized positive atmosphere. These walks are more expanded than
the example in (a) with small generalized positive atmosphere. A walk with a large negative
generalized atmosphere also appears expanded as in this example. This walk has a

g
+ = 52 and

a
g
− = 18.

over the state space. The implementation of a Monte Carlo style sampling may take a variety
of different forms, including direct sampling, kinetic-type algorithms or sampling from a
distribution along a Markov Chain. In this context, any statistical sampling of walks will be
loosely referred to as a Monte Carlo algorithm.

In the case of walks, the state space S can be defined in several ways, depending on
the type and the implementation of the Monte Carlo algorithm. In some cases, S will
be the abstract space of all conformations of walks, oriented from one endpoint and rooted in
the origin. In other cases, it will be more appropriate not to orient or root the walks, but to
consider equivalence classes of walks which are identical up to translation in the lattice.

The (normalized) distribution over a state space gives the probability that a given state will
be sampled. In many cases this will not be the uniform distribution. For example, if the state
space is infinite, then the probability of a given walk will normally depend on its length. An
algorithm which samples walks (or any other object) of fixed size from the uniform distribution
is a canonical Monte Carlo algorithm. If the algorithm samples walks of arbitrary size (length)
from a distribution dependent on length, then the algorithm is a grand canonical Monte Carlo
algorithm. Normally, the terms ‘canonical’ and ‘grand canonical’ refer to particular statistical
ensembles of objects or states endowed with the Boltzmann distribution, but we abuse these
terms to refer to ensembles of walks with fixed length (canonical) or arbitrary length (grand
canonical).

Lastly, algorithms which sample directly from the state space S are called static Monte
Carlo algorithms, while sampling along a Markov chain in the state space is a dynamic Monte
Carlo algorithm.

4.1. Atmospheric moves and Monte Carlo algorithms

The detailed implementation of a particular Monte Carlo algorithm may be defined in terms
of self-avoiding atmospheres and atmospheric moves. Consider the state space S of all self-
avoiding walks. Positive and negative atmospheric moves, as well as neutral atmospheric
moves, create linkages between walks. For example, the pair (s, s ′) may be a linkage where a
positive atmospheric move changes s into s ′, and a negative atmospheric move changes s ′ into
s. Neutral atmospheric moves similarly define linkages in the state space S.
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Figure 22. A graph of linkages in the state space of walks. Each vertex corresponds to a walk,
each edge is a linkage.

The linkages created by atmospheric moves may be represented as a graph with vertices
corresponding to walks (elements of the state space S), and edges corresponding to linkages.
Such a graph is schematically illustrated in figure 22.

In the case of positive and negative atmospheres, the graph of linkages is an infinite graph
with each vertex corresponding to a particular self-avoiding walk. If there is a path of finite
length between any two vertices in the graph, then the corresponding walks may be changed
into one another by applying a sequence of (positive and negative) atmospheric moves. If
there is a path of finite length between any pair of vertices in the graph of linkages then we
say that the corresponding set of positive and negative atmospheric moves is irreducible.

Since each positive atmospheric move can be reversed by a negative atmospheric move,
a path between a walk s and a walk s ′ in the graph of linkages is reversible.

Similarly, neutral atmospheric moves create linkages in the state space of walks of fixed
length n. This defines a finite graph of linkages with vertices which are walks of fixed length
in the state space and edges the linkages defined by the neutral atmospheric moves. This
situation is also schematically illustrated by figure 22, but in this case the graph of linkages is
a finite graph.

We say that a set of neutral atmospheric moves is irreducible if its associated graph is
connected. Similarly, the set is reversible if every path between two vertices can be reversed
by the atmospheric moves.

Sets of atmospheric moves can be used to define Monte Carlo algorithms for sampling
self-avoiding walks. If a set of neutral atmospheric moves is used, then the algorithm will
sample walks of (given) fixed length, and the algorithm is a canonical Monte Carlo algorithm.
If a set of positive and negative atmospheric moves is used to sample walks of arbitrary and
variable length, then the algorithm is a grand canonical algorithm.

Generally, atmospheric moves and statistics will be a key factor in our approach to both
the calculation of the properties of walks and in the design of algorithms for self-avoiding
walks. For example, estimates of μ were obtained from atmospheric statistics in [130, 131],
while endpoint atmospheric moves give rise to Rosenbluth-style sampling [132] of walks in
the PERM [44] and flatPERM algorithms [5, 126], as well as the Berretti–Sokal algorithm
[9] and under a slight generalization to the scanning method [105]. Similarly, plaquette
atmospheres give rise to BFACF-style algorithms [8, 4], while generalized atmospheres give
rise to GARM-style or GAS-style algorithms [131]. The pivot algorithm for walks of fixed
length is defined by the implementation of pivot neutral atmospheric moves [92, 102]. From
the most general point of view an implementation of a Monte Carlo algorithm proceeds by
selecting a set of atmospheric moves and showing that the graph of linkages is connected.
The implementation of the algorithm is normally via sampling along a Markov chain in the
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graph of linkages. Analysing the properties of the chain gives information on the nature of
the algorithm. In the following section, we discuss various implementation schemes.

4.2. Static Monte Carlo algorithms

In a static Monte Carlo algorithm independent states {s1, s2, . . . , si , . . .} are sampled from a
state space S such that state si is sampled with probability pi . If the weight of state si is defined
by wi = 1/pi , then the canonical average of an observable O is

〈O〉est
N =

∑N
i=1 O(si)wi∑N

i=1 wi

. (111)

For each realization of the states {s1, s2, . . . , sN }, the average 〈O〉est
N is an independent estimate

of the mean value 〈O〉 over the entire state space S. The strong law of large numbers implies
that 〈O〉est

N → 〈O〉 as N → ∞ with probability 1. Moreover, since the averages 〈O〉est
N are

identically and independently distributed for any realization {s1, s2, . . . , sN }, the central limit
theorem states that the estimated variance σ est

N in the average 〈O〉N is given by

[
σ est

N

]2 = 〈O2〉est
N − [〈O〉est

N

]2
N − 1

. (112)

That is,
(〈O〉est

N −〈O〉)/σN is asymptotically normally distributed with mean zero and variance
one. A 67% statistical confidence interval on 〈O〉est

N is estimated by σ est
N , while 2σ est

N is an
estimated 95% confidence interval.

The implementation of a static Monte Carlo algorithm is in principle quite simple. States
sampled from a distribution are independent and statistical analysis of quantities measured is
simple. However, this does not mean that it is easy to code and use these algorithms, since
there are other practical considerations which may make sampling inefficient, or impractical.

4.2.1. Approximate enumeration. Static Monte Carlo algorithms, including the Rosenbluth
algorithm, as well as GARM, GAS and the flat versions of these algorithms, are approximate
enumeration algorithms in the sense that the expected value of the weights wi of walks of
length n is equal to cn [44, 59, 79, 131, 132] (the situation is slightly more complex in GAS
in that a ratio of expected weights will be equal to cn).

Hence, by estimating average weights in these algorithms, an estimate of cn can be
obtained; generally, one has

cn = 〈wi〉n, (113)

where 〈·〉n indicates the expected value over all walks of length n.
Data obtained by approximate enumeration may be evaluated by using series analysis

techniques, provided that the data are accurate enough to dampen out random noise and
sampling biases. A starting point is the ratio estimator

rn =
√

cn+2

cn

∼
(

1 +
γ − 1

n

)
μ (114)

for μ which can be plotted against 1/n. In approximate enumeration cn in the above is replaced
by approximate values obtained from a simulation. This was done in figure 23, where rn was
computed from approximations to cn and then plotted against 1/n. By extrapolating the ratio
estimators to the intercept with the Y-axis and relying on equation (3), an estimate of μ is
obtained. These particular estimators in figure 23 were generated by a simulation of flatGAS
for n ∈ [0, 249].
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Figure 23. The ratio estimator rn (see equation (114)) plotted against 1/n for two-dimensional
data obtained by flatGAS for n ∈ [2, 249]. Extrapolating to 0 gives an estimate of μ.

A slightly better approach also involving ratio estimators is to use a linear extrapolant of
rn of the form

μn = nrn − (n − 1)rn−1 (115)

instead. The extrapolants μn scatter about μ, and averages or linear regressions may be used
to determine best estimates of μ, often by ignoring data for small values of n.

Similarly, biased estimators for the entropic exponent γ are given by the extrapolant

γn = nrn/μ − n + 1, (116)

where one may choose a best estimate for μ. See [79] for results on this using flatGAS for
walks.

Other series techniques, including Padè and differential approximants, require very
smooth data sets and have not been used successfully in modelling Monte Carlo data to
extract critical exponents and growth constants. However, improved computing power and
better approximate enumeration data may make it possible to apply more sophisticated series
analysis techniques to Monte Carlo data, and this possibility remains an interesting and
probable development in this field.

4.3. Dynamic Monte Carlo algorithms

Dynamic Monte Carlo algorithms involve certain dynamic rules (these are atmospheric moves
which defines the ‘elementary moves’ of the algorithm) for sampling along a Markov chain
in the state space S. The basic implementation is as follows: suppose that {s1, s2, . . . , sN } is a
realization of a Markov Chain in S. The next state sN+1 is obtained by applying an elementary
move to sN to propose the next state. The next state is accepted by applying a probabilistic
rule. If the Markov Chain is ergodic (reversible and irreducible) and aperiodic, then the
fundamental theorem of Markov chains implies that the sampling is from a unique stationary
distribution, and statistical analysis of the sampled states can be done based on this.

4.3.1. Canonical dynamic Monte Carlo algorithms. This class of algorithms samples walks
of fixed size from the uniform distribution. The algorithm is implemented via its microscopic
dynamics: suppose that the sequence of walks {s1, s2, . . . , sN } in state space S of walks of
fixed length is a realization of a Markov chain. The next state sN+1 is obtained by applying an
elementary move (which is a construction on sN to change it into a newly proposed walk). We
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assume here that the proposed state is generated with uniform probability by the elementary
move. The proposed walk is accepted as sN+1 if it is a walk, otherwise it is rejected and
sN+1 = sN . That is, a state is read again into the Markov chain if the elementary move fails to
produce a walk.

The microscopic dynamics of the algorithm set up a transition matrix P such that Ps→t

is the probability of obtaining state t from state s by applying the elementary move. The
elementary moves are independent of time, so that P is the transition matrix of a homogeneous
Markov chain. Moreover,∑

t

Ps→t = 1 (117)

since the chain will have a next state with probability 1. Thus P is a probability matrix with
largest eigenvalue equal to 1.

If πsPs→t = πtPt→s then P is reversible with respect to the distribution π (that is, the
transition probabilities sample along the same Markov chain if time is reversed). The left
eigenvector π defined by πs =∑t πtPt→s is the stationary distribution of P if P is reversible
with respect to π .

A canonical dynamic Monte Carlo algorithm is said to be irreducible if for any two given
states s and t in the state space S, there is a realization of the Markov chain such that s and t
are states in the chain. In other words, there is a finite value of n, such that [P n]st > 0.

The Monte Carlo algorithm is also said to be aperiodic if for any two given states s and t,
there is an N such that [P n]s→t > 0 for all n � N . If the algorithm is not aperiodic, then it
may still be irreducible. If a Monte Carlo algorithm is both aperiodic and irreducible, then it
is said to be ergodic.

A Markov chain Monte Carlo algorithm which is ergodic and reversible has a unique
stationary distribution π . The distribution π is also its limiting distribution in the sense that
ρs[P n]s→t → πt as n → ∞ for any distribution ρs . That is, the algorithm samples states
sj ∈ S asymptotically from the distribution π along a Markov chain irrespective of the initial
state s1. The Perron–Frobenius theorem guarantees the existence of the stationary distribution
π , and also proves that limn→∞ ρs[P n]s→t = π for any initial distribution ρ. In this event,
the algorithm is said to be ergodic.

If {s1, s2, . . . , sN } is a realization of a Markov chain by the algorithm and O is an
observable on the si , a natural estimator for the expected value 〈O〉 is the average

〈O〉est
N = 1

N

N∑
i=1

O(si) → 〈O〉. (118)

The convergence of 〈O〉est
N to 〈O〉 as N → ∞ is a consequence of the ergodic theorem (see

for example [42]).
The central limit theorem also holds, and the distribution ofO(si) is asymptotically normal

about 〈O〉. The states si are correlated, and care must be taken in the analysis of variance of
observables measured along the realized Markov chain.

4.3.2. Simulations of interacting models of walks by dynamic Monte Carlo simulations.
Models of interacting walks, such as collapsing or adsorbing walks in figure 4, introduce a
parameter z = eβ in the model and define a partition function

Zn(β) =
∑
|s|=n

eβE(s) =
∑
m

cn(m)eβm, (119)

where the first summation is over all walks s of length |s| = n and energy E(s), and where
cn(m) is the number of walks of length n and energy m.
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For example, in a model of walks adsorbing in a plane the energy m is the number of visits
of vertices in the walk to the adsorbing plane. In a model of collapsing walks the energy m is
the number of nearest neighbour contacts (vertices not adjacent in the walk but adjacent in the
lattice) in the walk. Similarly, models of stretched and pulled walks have energies associated
with each conformation. For small or negative values of β the partition function is dominated
by walks with small values of the energy m. For large values of β the partition function is
dominated by walks with large energies.

The simulation of interacting models of walks by a dynamic Monte Carlo algorithm poses
unique numerical challenges. In the first instance, walks must be sampled along a Markov
Chain from the Boltzmann distribution

Pβ(s) = eβE(s)

Zn(β)
. (120)

Second, the mobility of the Markov chain may decrease for large values of β, increasing
autocorrelation times along the chain and making it difficult to determine good numerical
estimates of the mean values of observables. These sampling problems are normally referred
to as quasi-ergodicity problems.

A symmetric canonical Monte Carlo algorithm can be used to sample from the distribution
Pβ(s) by implementing it with the Metropolis algorithm [65, 110]. States proposed by the
underlying elementary moves are accepted by a Metropolis criterion in such a way that
the algorithm samples along a Markov chain from the Boltzmann distribution Pβ(s). The
implementation of the Metropolis algorithm is as follows:

Algorithm 4.1 (Metropolis algorithm). Suppose that sn is the current state, and that a proposal
for a next state s ′ has been constructed from sn using an elementary move in the underlying
canonical Monte Carlo algorithm which samples states from the uniform distribution.

The following steps will find the next state sn+1 in the Markov chain:

(1) Construct a proposed next state s ′ with uniform probability by applying the elementary
moves to sn.

(2) Compute the ratio

q = Pβ(s ′)
Pβ(sn)

,

where Pβ(s) is the Boltzmann distribution.
(3) The state sn+1 is now determined by the Metropolis criterion: if s ′ is a self-avoiding walk,

then sn+1 = s ′ with probability min{q, 1}. Otherwise sn+1 = sn.

The probability that a state t is obtained as the next state if s is the current state, Ps→t , then
satisfies the equation

Pβ(s)Ps→t = Pβ(t)Pt→s (121)

and so Ps→t is reversible with respect to the Boltzmann distribution Pβ(s) over the state space
S. By summing the above over s one sees that∑

s

Pβ(s)Ps→t = Pβ(t). (122)

The rejection technique in the Metropolis algorithm implies that the algorithm samples along
an aperiodic Markov chain. If the underlying elementary moves are irreducible, then the
algorithm is ergodic, and it follows from equation (122) that it samples along a Markov chain
asymptotically from the unique distribution Pβ(s). Observe that while we chose Pβ(s) to be
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the Boltzmann distribution, that this is not required; one may substitute for it by any other
distribution and then sample along a Markov chain. This observation underlies umbrella
sampling [147], which we consider below.

Normally one is interested in estimating the expectation value of some observable O with
respect to the Boltzmann distribution; that is

〈O〉β =
∑

m cn(m)O(m)eβm

Zn(β)
. (123)

The natural estimator of this expectation value is the sample average

〈O〉est
N = 1

N

N∑
i=1

O(si), (124)

where the algorithm realized the Markov Chain s1, s2, . . . , sN by sampling N walks starting
from the configuration s1. The ergodic theorem applies here as well [42], and 〈O〉est

N → 〈O〉β
almost surely as N → ∞. The distribution of the observable O(si) is asymptotically
normal about 〈O〉β , but are correlated, and analysis of variance must take this into account in
determining a confidence interval on the sample mean.

4.3.3. Umbrella sampling. The problem with the Metropolis implementation of a canonical
Monte Carlo algorithm for the simulation of interacting models of walks is that for large
positive values of z = eβ the Markov chain converges very slowly to its limit distribution.
Typical realizations of the Markov chain spend long periods sampling small regions in state
space and only slowly diffuse to other regions. This is the quasi-ergodic problem [147].

One approach to address this problem is to run the Metropolis algorithm at a smaller value
of β, but then to use weighted averages to estimate sample means at larger values of β. This
approach depends on the following identity: let π be a distribution different from Pβ above.
Then

〈O〉β =
∑

m O(m)cn(m)Pβ(m)∑
m cn(m)Pβ(m)

=
∑

m O(m)cn(m)Pβ(m)[π(m)/π(m)]∑
m cn(m)Pβ(m)[π(m)/π(m)]

∑
m π(m)∑
m π(m)

=
∑

m O(m)cn(m)[Pβ(m)/π(m)]
[
π(m)/

∑
m π(m)

]
∑

m cn(m)[Pβ(m)/π(m)]
[
π(m)

/∑
m π(m)

]
= 〈OPβ(m)/π〉π

〈Pβ(m)/π〉π , (125)

where 〈·〉β is as before the expectation value with respect to the Boltzmann distribution Pβ ,
while 〈·〉π is the expectation value with respect to the distribution π . In other words, one
may replace the Boltzmann distribution with π in the simulation, and then use the ratio of
expectation values above to determine 〈O〉β with respect to the Boltzmann distribution.

If s1, s2, . . . , sN is the realization of a Markov chain from π , then the estimator for the
canonical Boltzmann expectation value is given by

〈O〉est
N =

∑N
i=1 O(si)[Pβ(si)/π(si)]∑N

i=1[Pβ(si)/π(si)]
. (126)

As before, 〈O〉est
N → 〈O〉β as N → ∞.

39



J. Phys. A: Math. Theor. 42 (2009) 323001 Topical Review

This implementation of weighted averages works well if the distributions Pβ and π

overlap significantly. However, if the distribution Pβ gives rise to quasi-ergodic problems,
then π will similarly suffer from quasi-ergodic problems if it has significant overlap with
Pβ . This problem is overcome by umbrella sampling [147] and this relies on the fact that
the distribution π can be chosen arbitrarily. If π is chosen such that it also has overlap with
Boltzmann distributions where the algorithm has high mobility, then quasi-ergodic problems
are largely avoided. Thus, the idea is to choose π carefully to be a wide distribution which
overlaps both a Boltzmann distribution of interest and other Boltzmann distributions where
the Markov chain converges fast. In this case π is called an umbrella distribution.

The flexibility in choosing π leaves one without an obvious set of criteria for choosing
a suitable umbrella. Normally (see for example [145]) a weighted average of Boltzmann
distributions can be chosen

π(s) =
∑

j

wje
βj E(s), (127)

where E(s) is the energy of the state s, and where the set of parameters {β1, β2, . . . , βm}
includes values of β where the Markov chain is mobile as well as ranges of β where the
Markov chain suffers from quasi-ergodic problems, but where we may want to compute
sample averages. The weights wj have to be chosen such that the individual Boltzmann
distributions Pβj

contribute more or less equally to π . That is, the sampling should be
approximately uniform in the parameter β over the entire range [β1, βm].

This requirement can be satisfied by considering � =∑s π(s). This shows that

� =
∑

s

π(s) =
∑

s

∑
j

wje
βj E(s) =

∑
j

wj

∑
s

eβj E(s) =
∑

j

wjZn(βj ). (128)

The choice of the weights wj in the above should be such that the contribution of the j th term
to �, given by wjZn(βj )/� is more or less a constant in j . That is, wjZn(βj ) should be
independent of j , or only weakly dependent on it. Since the partition function is related to the
finite n free energy Fn(β) by Zn(β) = enFn(β), this shows that a convenient choice for wj is

wj = Ce−nFn(βj ), (129)

where C is a constant. Thus, to use this method effectively one must have reasonable estimates
of the free energy of the model. A practical implementation would first guess an umbrella
and then use the results of initial simulations to determine estimates of the free energy which
are used to update the umbrella. A few iterations of this process are enough to find a good
umbrella distribution.

4.3.4. Multiple Markov chain Monte Carlo. Mobility in a Markov chain can also be
improved by sampling along a set of Markov chains in parallel. This method is called
multiple Markov chain Monte Carlo [41] and may be implemented efficiently in computers
with parallel architecture. The method samples along Markov chains at different values of β

simultaneously and swaps conformations between the chains; this improves mobility along
any given chain.

Suppose that one wants to sample along a Markov chain at z = eβ where convergence is
slow, but that it is known that convergence is quick at a different value z′ = eβ ′

< eβ = z.
The idea is to select a sequence of values of β, say β ′ = β1 < β2 < · · · < βm = β,
which interpolates between β and β ′. βj are chosen close enough together so that there is
considerable overlap between adjacent Boltzmann distributions Pβj

and Pβj+1 .
The Markov chains at each of βj are initiated and are sampled in parallel for a specified

number of steps. Then an adjacent pair of chains at βj and βj+1 is chosen uniformly from the
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m − 1 adjacent pairs, and as a trial move, the configurations at these β values are swapped.
Suppose before the swap that the state sj is in the chain at βj , and state sj+1 is in the chain at
βj+1. If the distribution for given β is Pβ(s), then the swap is accepted with probability

r(j, j + 1) = min

{
1,

Pβj+1(sj )Pβj
(sj+1)

Pβj
(sj )Pβj+1(sj+1)

}
. (130)

The entire set of chains together with the swapping probability is itself a Markov chain which
we call the composite chain.

Since each Markov chain is ergodic, the composite chain is ergodic, and its unique limit
distribution is the product distribution of the separate Markov chains at βj for j = 1, 2, . . . , m.
This follows immediately, since if r(j, j + 1) < 1, then[

m∏
k=1

Pβk
(sk)

]
r(j, j + 1)

m − 1
=
[

m∏
k=1

Pβk
(sk)

][
1

m − 1

] [
Pβj+1(sj )Pβj

(sj+1)

Pβj
(sj )Pβj+1(sj+1)

]

=
⎡
⎣ ∏

k �=j,j+1

Pβk
(sk)

⎤
⎦[Pβj+1(sj )Pβj

(sj+1)

m − 1

]
(131)

and similarly if r(j, j + 1) = 1.
Every successful swap involving a given chain and its neighbour corresponds to a large

change in the conformation of the state in each chain. This reduces autocorrelations along each
chain. In addition, states in chains with low mobility also migrate to chains with high mobility;
this alleviates quasi-ergodicity problems by providing new conformations in different parts of
state space for low mobility chains.

Implementing multiple Markov chain Monte Carlo poses some practical considerations.
First, a set of β values must be decided upon. If there are too many, then this slows down the
sampling since CPU time increases with the number of chains. If there are too few, then there
may not be enough overlap between adjacent chains and the swapping probability will be low.
Thus, the number of chains, and their spacing, should be set such that a reasonable swapping
probability is observed between each pair of chains. Second, the frequency of attempted
swapping must be determined. By swapping pointers instead of conformations, swapping may
be made computationally inexpensive, in which case swapping may be attempted frequently
without increasing computational cost. See [77, 144, 145] for more details.

4.4. Grand canonical Monte Carlo algorithms

Grand canonical algorithms normally sample walks from a Boltzmann distribution over the
lengths of the walks: the asymptotic probability that a walk s is observed along a realized
Markov Chain is given by

Pt(s) = t |s|∑
s t |s|

, (132)

where |s| is the length (or the number of edges) of the walk s.
The distribution (132) is only normalizable for small enough values of t, and the radius

of convergence of
∑

s Pt (s) defines a critical value tc. If the parameter t > tc, then the
distribution Pt is not defined, and the grand canonical algorithm cannot be implemented.

Grand canonical algorithms are most easily implemented by sampling along a Markov
chain using the Metropolis algorithm: elementary moves are constructed from positive and
negative atmospheres of walk. A proposed state s ′ is constructed from the current state sn

using an elementary move. Once an elementary move is attempted, then the probability for

41



J. Phys. A: Math. Theor. 42 (2009) 323001 Topical Review

accepting s ′ as the next state in the Markov chain depends both on (1) the change in length
and (2) whether s ′ is self-avoiding.

Algorithm 4.2 (Grand canonical sampling of walks). A metropolis implementation of grand
canonical sampling of walks is as follows:

(1) Set the parameter t and let s1 be an initial walk.
(2) Suppose the current state is sn and apply an elementary move to propose a next state s ′.
(3) If s ′ is not a self-avoiding walk, then reject it and put sn+1 = sn.
(4) If s ′ is a self-avoiding walk, then determine the ratio

q = Pt(s
′)

Pt (sn)
= t (|s

′|−|sn|).

Put sn+1 = s ′ with probability min{q, 1}, otherwise put sn+1 = sn.
(5) If the requisite number of iterations has been performed, then terminate the algorithm,

otherwise continue at step (2).

If the initial state is s1, then this implementation realizes a Markov chain {s1, s2, s3, . . . , sN }.
The mean length (number of edges) in the walks sn depends on the parameter t, and the states
along the chain are correlated so that analysis of variance of observables must be carried out
with some care. Observe that aperiodicity is built in this algorithm by the rejection technique,
but that irreducibility of the elementary moves must be proven.

The probability Ps→r that a state r will be observed to follow state s along the chain is
given by the product of the probability p(s) that r will be proposed by the elementary move
if the current state is s, and by the conditional probability that r will be accepted if proposed
given by min{1, q}. Thus

Ps→r = p(s) min{1, q}. (133)

Similarly, one may determine Pr→s , and it follows that the detailed balance condition in these
grand canonical algorithms are given by

Pt(s)Ps→r

p(s)
= Pt(r)Pr→s

p(r)
. (134)

Thus, the algorithm is reversible with respect to the distribution [Pβ(s)/p(s)]. If the
algorithm is irreducible, then by summing both sides of equation (134) over s (and noting that∑

s Pr→s = 1), it follows that∑
s

Ps→r

[
Pt(s)

p(s)

]
=
[
Pt(r)

p(r)

]
. (135)

In other words, the algorithm samples asymptotically from the invariant distribution given by

Dt(s) = [Pt(s)/p(s)]∑
r [Pt(r)/p(r)]

. (136)

In implementations where p(r) = p(s) this reduces to the Boltzmann distribution in
equation (132). Normally, p(s) will be related to the length of the walk s: for example, in the
BFACF-algorithm [4, 8] it is the case that p(s) = 1/(2(d − 1)|s|) in d dimensions, in which
case the detailed balance condition in equation (134) is given by |s|t |s|Ps→r = |r|t |r|Pr→s ,
and the algorithm samples asymptotically from the distribution A|s|t |s| over the state space S,
with A being a normalization constant.

Sampling along a Markov chain with a grand canonical algorithm from the Boltzmann
distribution (132) with t < tc gives a correlated Markov chain of realized states which we
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denote by {s1, s2, s3, . . . , sN }. Each state is a walk of length |si |, and the initial state s1 is an
arbitrary walk used to initialize the sampling.

The asymptotic distribution for walks of fixed given length or size along the chain is
uniform, and the (canonical) average of an observable O can be determined by sieving states
of given length from the chain and then computing 〈O〉N as in equation (118). The strong
law of large numbers applies in this case as well, while the central limit theorem implies that
the distribution of 〈O〉N for fixed size is asymptotically normal about 〈O〉. This is not a very
efficient way of sampling walks of given size, but in some applications may still be the best
way to proceed [71, 74].

Alternatively, the (grand canonical) average

〈O〉est
t,N = 1

N

N∑
i=0

O(si) (137)

at given value of the activity t can be analysed. In this case, the law of large numbers shows
that 〈O〉est

t,N converges to its mean value

〈O〉t =
∑

r

Dt (r)O(r). (138)

In the case that N → ∞, 〈O〉est
t,N → 〈O〉t almost surely as N → ∞.

Canonical Boltzmann averages can be determined by determining averages of p(s)O(s)

and p(s) instead. Then the ratio estimator

〈p(s)O〉t,N
〈p(s)〉t,N → 〈O〉can

t =
∑

r

Pt (r)O(r) (139)

converges to the canonical average over the Boltzmann distribution as N → ∞.
In grand canonical algorithms, the correlations between states along the realized Markov

chain can be very long (and is typically more persistent than correlations present in the
canonical algorithms).

4.5. Canonical and grand canonical Monte Carlo algorithms for interacting models

The most general implementation of the Metropolis algorithm is in models of interacting
walks. In such models each walk s is endowed with an energy E(s), and the goal is to use a
Monte Carlo algorithm to sample from the Boltzmann distribution

Pβ(s) = eβE(s)∑
r eβE(r)

, (140)

where β can be interpreted as an ‘inverse temperature’. Comparison to equation (56) shows
that z = eβ in this model, and the general comments in section 2.3 apply here.

If the sampling is canonical (in a state space of fixed length walks) then this distribution
is normalizable for any value of β. On the other hand, if the sampling is grand canonical, then
E(s) may depend in some way on the length of the walk s, and in which case there is a critical
value βc of β.

In the case of canonical sampling of walks of fixed length, the implementation of the
Metropolis algorithm follows the steps outlined in algorithm 4.1. If sn is the current state, then
an elementary move is applied to construct a proposed state s ′. The parameter q is given by

q = eβ(E(s ′)−E(sn)) (141)

and s ′ is accepted as the next state in the Markov chain with probability min{1, q}.
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In the event that a grand canonical simulation is done, elementary moves may change the
length of the walk, in which case the edges are weighted by t. If sn is the current state, and a
proposed state s ′ is constructed by an elementary move. Then parameter q is given by

q = t (|s
′|−|sn|)eβ(E(s ′)−E(sn)) (142)

and s ′ is accepted as the next state in the Markov chain with probability min{1, q}. In other
words, in a grand canonical implementation the ‘energy’ of a state s has a term proportional
to its length and is given by |s|log t + βE(s). There are two parameters (t, β) in this case.
Normally, t is fixed at a convenient value so that walks of sufficient length are generated, while
β is changed to explore the effects of the energy term. The βt-plane is a phase space for the
model, with a critical line tc(β) which determines the radius of convergence of the generating
function (see equations (58) and (59)). In this event, one identifies the limiting free energy of
the model, given by F(κ) = −log tc(κ) as in equation (59), where z = eβ .

The same observations made for interacting models apply in this case. As above, the
algorithm samples along a Markov chain asymptotically from the invariant limit distribution
of the algorithm is given by

D(s) = [Pβ(s)/p(s)]∑
r [Pβ(r)/p(r)]

(143)

for given t and β. This reduces to a Boltzmann distribution if the probability of selecting an
elementary move p(s) is independent of s.

Given a realization of a Markov chain {s1, s2, s3, . . . , sN } in a canonical implementation
of the algorithm will give the estimator

〈O〉est
β,N = 1

N

N∑
i=0

O(si) (144)

of the mean value

〈O〉β =
∑

r

D(r)O(r). (145)

As above, in the case that p(s) is not independent of s, canonical averages can be determined
by using the ratio estimator in equation (139).

4.6. Analysis of variance

Static algorithms, such as the Rosenbluth, PERM and GARM, produce independently sampled
walks. If the walks are not sampled from the uniform distribution, then weighted averages
must be determined, and averages are computed as in equation (111). The variance σN in
equation (112) gives a 67% confidence interval on the computed average.

The situation is more complicated for dynamic Monte Carlo algorithms such as the
Berretti–Sokal and pivot algorithms. For both canonical and grand canonical sampling
realizing a Markov chain {s1, s2, . . . , sN } of states, the observables along the sequence of
states, given by {O(s1),O(s2), . . . ,O(sN)}, are correlated. The average value of this correlated
sequence is

〈O〉est
N = 1

N

N∑
i=1

O(si) (146)

and it is asymptotically an unbiased estimator distributed normally about the expected value
〈O〉. In figure 24, a time series for the square radius of gyration of square lattice walks of length
n = 200 plotted as a function of iterations of the pivot algorithm. The data are correlated
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Figure 24. Time series data from a simulation of self-avoiding walks of length n = 200 using
the pivot algorithm. Plotted is the square radius of gyration against the iterations. The data are
correlated, and time series analysis can be used to determine means and variances.

and computing averages requires careful analysis of the autocorrelation times along this time
series.

The variance of the distribution of 〈O〉est
N about the mean is harder to compute. Although

the time series of measured observables {O(si)} has identically distributed elements, they are
not independent, and autocorrelations must be calculated to determine confidence intervals.

The dependence of an observable along a time series is statistically measured by an
autocorrelation function. Normally, the autocorrelation function decays at an exponential rate
measured by the autocorrelation time τO along the time series. The ‘connected’ autocorrelation
function

SO(k) = 〈O(si)O(si+k)〉 − 〈O〉2 (147)

along the Markov chain measures the correlations between states a distance of k steps apart
along the time series. The time series is asymptotically homogeneous (independent of its
starting point); this implies that 〈O(si)〉 = 〈O〉 independent of si . In other words, the
autocorrelation time SO(k) is only dependent on the separation k between the states O(si)

and O(si+k). If the states are uncorrelated, then the chain is homogeneous and 〈O(si)O(si+k)〉
factors. Thus

〈O(si)O(si+k)〉 = 〈O〉2. (148)

In this case SO(k) = 0 if k > 0 and SO(0) is the variance of the observable O.
More generally, the sequence {O(si)} is an asymptotically homogeneous time series of

correlated states each with identical distribution but correlated by the Markov property to prior
states. In this case, the autocorrelation function is given by

SO(k) = 〈O(si)O(si+k)〉 − 〈O〉2

= 〈(O(si) − 〈O〉) (O(si+k) − 〈O〉)〉 . (149)

With increasing values of k the autocorrelation function SO(k) decays to leading order at
an exponential rate τO which is called the exponential autocorrelation time:

SO(k) � COe−k/τexp,O . (150)

The exponential autocorrelation time of the observable O is then defined by

τ−1
exp,O = lim sup

k→∞

[−log SO(k)

k

]
. (151)
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The exponential autocorrelation time of the time series (and thus of the underlying Monte
Carlo dynamics) is defined by

τexp = sup
O

τexp,O (152)

and it gives the timescale of the slowest modes (or longest autocorrelations) in the simulation.
An effective algorithm will have a short exponential autocorrelation time. As a matter of

principle, this also gives the timescale of the decay of initial bias in the algorithm. In other
words, if {s1, s2, . . . , sN , . . .} is a realization of a Markov chain with initial state s1, then the
bias introduced by the choice of a particular s1 can be assumed to have been lost in statistical
noise after mτexp iterations of the elementary moves of the algorithm, for large enough values
of m.

As a practical matter it is not possible to compute the exponential autocorrelation time.
Instead, the autocorrelation time is estimated for a particular observable O and then used to
determine the variance and a confidence interval on averages of O measured along the time
series.

Summing equation (150) shows that

2
∞∑

k=1

SO(|k|)
SO(0)

� (2τint,O − 1), (153)

where τint,O is the integrated autocorrelation time of the observable O. Solving for τint,O
shows that

τint,O = 1

2
+

∞∑
k=1

SO(k)

SO(0)
. (154)

If the time series is uncorrelated, then SO(k) = 0 whenever k �= 0, and the result is that
τint,O = 1/2 in that case. If the times series is correlated, then τint,O > 1/2. This definition
assumes that the autocorrelation function decays as a pure exponential. This is not strictly
the case, since there may be more than one exponential mode in the time series, each with its
own characteristic autocorrelation time. In other words, for the observable O we assume that
τint,O is the longest or dominant autocorrelation time, describing the slowest or most persistent
correlations in the stream. This assumption is normally not true, since there may be very slow
modes in the time series which are masked by noise and by larger, but more quickly decaying,
autocorrelations. However, for any given observable O, calculating τint,O is assumed to be
sufficient for setting statistical confidence intervals.

The variance of an observableO over the time series {s1, s2, . . . , sN } can now be computed
if one assumes that N (the length of the time series) is very large:[

σ est
O
]2 = 〈(O − 〈O〉est

N

)2〉est
N

= 1

N2

〈
N∑

i,j=1

(O(si) − 〈O〉N)(O(sj ) − 〈O〉N)

〉est

N

= 1

N2

N∑
i,j=1

SO(|i − j |)

≈ 2SO(0)

N

(
1

2
+

∞∑
k=1

SO(k)

SO(0)

)

=
[

2τint,O

N

]
SO(0). (155)
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If the data are uncorrelated, then τint,O = 1/2 and the variance reduces to the usual expression.
For correlated data, this shows that the number of effectively independent measurements is
N/[2τint,O].

4.6.1. Computing confidence intervals: I. Statistical confidence intervals can be computed
without directly measuring τint,O. A realization of a (correlated) time series {s1, s2, . . . , sN }
by a Monte Carlo algorithm is analysed by cutting it into blocks of size M, and then treating
the blocks as independent measurements of an observable O.

Define the average of O over the ith block by

[O]i = 1

M

M∑
j=1

O(siM+j ) (156)

for i = 0, 1, 2, . . . , �N/M�. Then {[O]i} is itself a time series and its variance can be
computed by

s2
M,O = 〈[O]2〉 − 〈[O]〉2. (157)

If [O]i are treated as independent measurements of 〈O〉, then the confidence interval σM,O on
the average is given by

σ 2
M,O = s2

M,O
�N/M� − 1

(158)

since there are �N/M� measurements [O]i of 〈O〉.
If M = 1, then each observable is a block of size 1, and since the data are correlated,

σ1,O is an underestimate of the confidence interval. Increasing the block size M also increases
σM,O, and for M comparable to 2τint,O the blocks should become statistically independent.
At this point, σM,O becomes stable, or only weakly dependent on M, and can be taken as a
statistical confidence interval. This should occur, for large values of N, when M ∼ 2τint,O.

4.6.2. Computing confidence intervals: II. A second method for estimating statistical
confidence intervals involves the calculation of integrated autocorrelation times. A
‘windowing’ scheme [102] provides a convenient method for doing this. Suppose that
{s1, s2, . . . , sN } is a Markov chain of states realized by a dynamic Monte Carlo algorithm.
Compute the average of an observable O over this realization:

〈O〉N = 1

N

N∑
i=1

O(si). (159)

The autocorrelation function is estimated by

SO(k) ≈ 1

N − k

N−k∑
i=1

(
O(si)O(si+k) − 〈O〉2

N

)
. (160)

Since SO(k) ∼ e−k/τint,O , the autocorrelation time should decay with increasing k, and when
k > M > mτint,O for m large (say m ≈ 50), then the estimate for SO(k) should be less than
statistical noise in the time series.

If k is cut off at M, then the estimate for τint,O is

τM = 1

2
+

M∑
k=1

SO(k)

SO(0)
. (161)
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Implement this estimate recursively as follows:

Algorithm 4.3 (Estimating τint,O).

(1) Put τm = 1/2 for each m ∈ {2, 5, 10, 25, 50, 100} proceed to step (2).
(2) Determine τ ′

m by summing

τ ′
m = 1

2
+

mτ∑
k=1

SO(k)

SO(0)
(162)

for each value of m.
(3) If |τm − τ ′

m| < ε for some small ε, then τm is the estimate of τint,O at window M = mτ .
Otherwise, put τm = τ ′

m and recursively update τ by executing step (2) above for each m.
(4) With increasing values of the window size m, τm will stabilize. This value is the estimate

of τint,O.

This algorithm only works well if N � M = mτint,O and m typically greater than 20.
In other words, the window should be much larger than the autocorrelation time, and much
smaller than the length of the time series. If either of these conditions fails, then it may be the
case that an erroneous estimate of the integrated autocorrelation time was computed.

Generally, the estimation of autocorrelation times is fraud with difficulties which may
conspire to give unreliable results. The only real cure for such difficulties is a time series
which is sufficiently long compared to the correlations which may be present. Thus, an
effective sampling scheme (algorithm) and long computer simulations give the best results.
Generally, good results are obtained if the time series contains at least 1000τint,O states for the
measurement of the observable O.

4.6.3. Initialization bias. Initialization bias in the average 〈O〉N of an observable O due
to a choice of a slowly mixing initial state over a time series of length N can be avoided by
discarding the first M states of the Markov chain for sufficiently large values of M. That is,
〈O〉N is computed as a function of M, until it shows no dependence on M apart from statistical
noise.

In principle, the length scale of initialization bias is set by the exponential autocorrelation
time τexp, and this may be much longer than the integrated autocorrelation times used in
determining statistical confidence intervals. In this respect, initialization bias introduces a
systematic error. Practical considerations show that this bias can be removed by throwing
away the first 25τ measurements along the time series, but this is only a rule of thumb, and
data should be examined to make sure that such biases are not present.

5. Simple sampling

Simple sampling of a self-avoiding walk is the simplest algorithm for generating walks of
small length. It is a very inefficient manner of sampling, but improvements which are not
obvious give rise to more efficient sampling algorithms, for example, the Rosenbluth algorithm
[132] in section 6.

Simple sampling of self-avoiding walks proceeds by choosing a starting vertex v0 at the
origin, and then appending an edge to it in a direction selected uniformly to obtain the next
vertex v1. The vertex vn is obtained recursively by adding an edge (selected uniformly from
one of 2d − 1 possible directions) to vn−1. If a self-intersection occurs then the conformation
is thrown away, and a new walk is initiated from the origin.
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Algorithm 5.1 (Simple sampling). The algorithm samples a collection of independent walks
of length n from the uniform distribution and can be implemented by the following steps:

(1) Let v0 be the vertex at the origin, and determine v1 by choosing one of the 2d nearest
neighbour vertices to v0.

(2) Determine vm recursively by choosing one of the 2d − 1 nearest neighbours of vm−1 in
the lattice.

(3) If vm intersects a previously selected vertex, then reject the entire walk and start a new
walk at step (1).

(4) If m < n, increment m and continue at step (2). If m = n, then a walk of desired length
has been generated; start the next walk from step (1) and continue until a desired number
of walks have been sampled.

Simple sampling is an algorithm which samples uniformly from the state space of random
lattice walks without a back step (that is, without stepping back over the last step). These
walks are filtered and the self-avoiding walks are retained.

The walks generated by simple sampling are independent, and simple averages of
measured quantities are unbiased estimators of the properties of walks of given length. This
algorithm is also very inefficient. Attrition of walks is exponential in the length n, and few
walks of significant length will be sampled even if many iterations are attempted.

If simple sampling produces a collection of N walks of length n, say {s1, s2, . . . , sN }, then
an unbiased estimator of the observable O is the average

〈O〉 = 1

N

N∑
i=1

O(s)i . (163)

The walks are statistically independent and a confidence interval is given by the standard
deviation σO defined by

σ 2
O = 〈O2〉 − 〈O〉2

N − 1
. (164)

The algorithm is rarely used, but is relevant because improvements to it give efficient sampling
schemes.

6. Rosenbluth sampling of self-avoiding walks

Rosenbluth sampling of self-avoiding walks is an improvement on simple sampling. The
implementation is similar, but is modified by choosing the next vertex in a walk only from those
which are not already occupied. The implementation is as follows: a starting vertex is chosen
at the origin, and the next vertex is selected recursively from the set of nearest neighbours
which are not already occupied by the walk; these vertices are in the endpoint atmosphere of
the walk. If there are no nearest neighbours available, then the entire (incomplete) walk is
rejected and a new walk is started at the origin.

The algorithm generates a set of N walks {si} of length n of weights Wi .

Algorithm 6.1 (Rosenbluth sampling).

(1) Put W = 1 and let v0 be the vertex at the origin, and determine v1 by choosing one of the
2d nearest neighbour vertices to v0.

(2) Suppose that vm−1 has σm−1 nearest neighbour vertices which are not already occupied.
Then σm−1 = ae

+, where ae
+ is the endpoint atmosphere of the walk v0v1 · · · vm−1.

Choose vm recursively by choosing a vertex from the unoccupied neighbours of vm−1

with probability 1/σm−1.
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(3) If σm = 0 then the walk is trapped, and it is rejected. A new walk is started at step (1).
(4) Update the weight W → Wσm−1.
(5) If m < n, then determine the next step by going to step (2). If m = n then a walk of

length n and weight W has been generated. Continue by starting a new walk at step (1)
until N walks are generated.

The Rosenbluth algorithm does not generate a sample of self-avoiding walks of length n from
the uniform distribution over state space. Instead, the probability P(s) of a walk s of length n
and weight W(s) being sampled is equal to 1/W(s) (the inverse of the weight computed by
the algorithm), and where W(s) is given by

W(s) =
m−1∏
i=0

σi(s) (165)

and where σi(s) is the number of open nearest neighbours of the ith vertex in the partially
grown walk of length i − 1 prefixing s. Observe that walks which have σi = 0 for some i are
technically included in the sample of walks, but with zero weight.

The partition function of walks of length n is

Zn =
∑
|s|=n

P (s)W(s) (166)

exactly if the sum is over all walks of length n. Since P(s) = 1/W(s), it follows that Zn = cn,
where cn is the number of walk of length n from the origin.

If a simulation of self-avoiding walks using Rosenbluth sampling produces a collection
of N walks of length n, say (s1, s2, . . . , sN) and with associated weights (W(sj )), then the
estimate of the partition function is

〈Zn〉N = 1

N

N∑
i=1

W(si). (167)

Since Zn ≡ cn, where cn is the number of walks of length n, it follows from the strong law
of large numbers that 〈Zn〉N → cn as N → ∞. In other words, the Rosenbluth algorithm is
basically a method for the approximate enumeration of walks.

An estimator of the observable O over a sample of N walks is the average

〈O〉est
N =

∑N
i=1 W(si)O(si)∑N

i=1 W(si)
. (168)

Walks with zero weight are included in the above ratio estimator, but with zero weight.
Moreover, by the strong law of large numbers 〈O〉est

N → 〈O〉 as N → ∞. In addition, the
central limit theorem applies and the estimates 〈O〉N are asymptotically normally distributed
about the expected value. Since walks are also statistically independent, a confidence interval
is given by the standard deviation σO defined by

σ 2
O = 〈O2〉N − 〈O〉2

N

N − 1
. (169)

Rosenbluth sampling is a significant improvement over simple sampling, and longer
walks can be sampled efficiently. Attrition of walks by trapped conformations becomes a
serious problem in this algorithm when the length of walks exceeds about 150 steps in the
square lattice. There is less attrition in higher dimensions, but even then attrition compounds
quickly with increasing length. In the square and cubic lattices, the dispersion of weights Wi

of walks of length n � 100 increases quickly so that they are spread over many orders of
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magnitude. Eventually a few walks with very large weights will dominate statistical averages
and effectively reduce the sample size. This causes the variance of the sample to increase and
at this point the algorithm fails to give reliable results.

The Rosenbluth method can be adapted to sample walks in an interacting model from a
Boltzmann distribution

Pβ =
∑

s

eβE(s), (170)

where E(s) is the energy of the walk s. In this case, the algorithm is modified by computing
the change in E for each of the nearest neighbours of the last vertex vm−1. Suppose that the
change in E for the kth nearest neighbour is �E

(k)
m−1. Then the kth nearest neighbour is chosen

as the next vertex with probability

u(k)
m = eβ�E

(k)
m−1∑sm

j=1 eβ�E
(j)

m−1

. (171)

In d dimensions vm−1 has 2d nearest neighbours, and one can deal with self-intersections by
putting �E

(k)
m−1 = −∞ whenever the kth nearest neighbour is occupied by vertices already

sampled. The probability of a given walk s of energy E(s) is

P(s) =
n∏

m=1

u(km)
m = eβE(s)−E0)∏|s|

m=1

∑sm

j=1 eβ�E
(j)

m−1

, (172)

where (km) is the sequence of nearest neighbours realized by the algorithm. Canonical averages
are computed by reweighing the walks appropriately: suppose that 〈sj 〉 has been sampled by
the algorithm, and that the weight of a walk s is given by

W(s) =
|s|∏

m=1

sm∑
j=1

eβ�E
(j)

m−1 . (173)

The partition function is similarly given (up to a constant) by

Zn(β) =
∑

s

P (s)W(s) = e−βE0
∑

s

eβEs (174)

and thus the estimate of the average weights in a simulation is given by

〈Zn(β)〉N = 1

N

N∑
i=1

W(si) (175)

if a sequence of N walks 〈s1, s2, . . . , sN 〉 was generated by the algorithm. It follows that
〈Zn(β)〉N → Zn(β) as N → ∞ so that this algorithm is a method for estimating the partition
function. Expected values of observables are similarly computed by

〈O〉est
β,N =

∑N
i=1 W(si)O(si)∑N

i=1 W(si)
(176)

is an estimator for the mean of O at fugacity β. A confidence interval can be estimated
similarly.

7. Dimerization of self-avoiding walks

Dimerization [1] is a process whereby the construction of self-avoiding walks is attempted
by concatenating shorter walks into longer walks. The method proceeds by generating a
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set of N walks and then dimerizing them in pairs. Each resulting walk is examined for
self-intersections (between its two halves), and both are removed from the collection if they
intersect. The remaining dimerized walks are kept and may be further dimerized in subsequent
iterations of the algorithm.

The method is implemented as follows:

Algorithm 7.1 (Dimerization).

(1) Generate, by using another Monte Carlo method, a set S0 of N0 independent walks of
length n.

(2) Suppose that Sm is a set of Nm walks of length 2mn edges. Dimerize pairs of walks in
Sm; if the resulting walk is self-avoiding (of length 2m+1n), then add it to the set Sm+1.
Otherwise, reject both walks and attempt a dimerization of two new walks selected from
Sm. Continue until there is only one walk or fewer remaining in Sm.

(3) If there are more than M walks in Sm+1, then increment m and continue at step (2).
Otherwise terminate the algorithm, and Sm is a collection of at least M self-avoiding
walks of length 2mn.

In this implementation, the algorithm will generate a collection of at least M independent
walks, of length 2mn, where m is the number of successive dimerizations of the walk. The
walks are contained in sets S0, S1, . . . , Sm. It is important to note that while all the walks in
set Sk are independent of one another, the sets Sk and Sk+1 are not independent: walks in Sk+1

were constructed from pairs of walks in Sk .
The probability of a successful dimerization attempt of a given pair of walks can be

approximated as follows: two walks starting in the origin will not intersect with probability
approximately c2n

/
c2
n. Substituting cn ≈ Anγ−1μn into this gives Cn1−γ for some constant

C. Since γ > 1 in low dimensions, this argument shows that the probability that two given
independent walks will dimerize decreases as a power law with their length.

Hence, if |S0| is the size of a set of independent walks of length n, then after dimerization
a set S1 of approximately |S1| ≈ |S0|n(1−γ )/2 walks of length 2n is obtained. In three
dimensions, γ ≈ 1.16 so that 1 − γ ≈ 1/6, and |S1|/|S0| ∼ n−1/6. Data in [1] support this
rough estimate. The algorithm is not as efficient in two dimensions.

An acceleration procedure for dimerized walks is described in [2]: by noting that two
walks may be dimerized in four different ways and biasing the dimerization in favour of
‘swollen’ conformations, the attrition of walks is reduced. Dimerization was also used to
extend the exact series of self-avoiding walks [104].

8. The scanning method

The scanning method [105] is a generalization of simple sampling and of the Rosenbluth
method. The algorithm selects steps one at a time to create a walk, but at each step scans
possible future walks to determine the probabilities for selecting a given step. In this way it
samples walks of given length from the uniform distribution.

The method is initiated by starting a walk at the origin in the d-dimensional hypercubic
lattice, and then giving a first step in one of 2d directions with probability 1/2d. Suppose
that a walk of length m with steps (edges) σ1, σ2, . . . , σm−1 has been generated. The
endpoint atmosphere ae

+ of the last vertex tm−1 gives the number of open vertices next
to tm−1 available for giving the next step σm. The probability for selecting σm from
amongst the ae

+ possibilities is dependent on all the previous steps σ1, σ2, . . . , σm−1 of
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the walk, and we denote it by the conditional probability pm(σ | σ1, σ2, . . . , σm−1) =
Pr [σ is the next step | the previous steps were σ1, σ2, . . . , σm−1].

The scanning method is implemented by exactly computing the conditional probability
pm(σ | σ1, σ2, . . . , σm−1) at each step, further conditioned on the fact that the final walk must
have length n. Thus, the probability of the mth step is computed by taking into account all the
partial walks of n − m + 1 steps which will complete the current partially generated walk of
length m − 1 into a walk of length n.

The number of partial walks of length n − m + 1 which can complete the walk
σ1, σ2, . . . , σm−1 into a walk of length n, given that the mth step is σ , is denoted by
Nn(σ | σ1, σ2, . . . , σm−1). For each possible mth step σ , this number will vary and it
is determined by an exact enumeration procedure. We define the (conditional) transition
probability for the mth step in the direction σ to be given by

pm(σ | σ1, σ2, . . . , σm−1) = Nn(σ | σ1, σ2, . . . , σm−1)∑
σ Nn(σ | σ1, σ2, . . . , σm−1)

(177)

and the mth step is given in direction σ by stepping with probability pm(σ | σ1, σ2, . . . , σm−1).
Once a walk of length n is constructed, then a new walk is started from scratch, and eventually
a collection of independent walks is generated.

The probability of obtaining a given walk s = σ1, σ2, . . . , σn is given by

Ps = 1

2d

n∏
m=2

pm(σm | σ1, σ2, . . . , σm−1). (178)

Since the algorithm enumerates all walks up to length n at each step of the algorithm, each
walk is generated with the same probability, and so Ps = c−1

n .
The scanning method is implemented by the following steps:

Algorithm 8.1 (The scanning method).

(1) Initiate a walk by giving a first step σ1 in one of 2d directions from the origin in the
hypercubic lattice.

(2) Suppose that the walk s of length m − 1 with steps σ1, σ2, . . . , σm−1 has been generated.
Determine the number of walks Nn(σ | σ1, σ2, . . . , σm−1) of length n − m + 1 and with
first step σ which can complete s into a walk of length n by scanning (enumerating) the
future steps of s. This is done for σ taking 2d − 1 different directions.

(3) Choose a direction for σ with probability

pm(σ |σ1, σ2, . . . , σm−1) = Nn(σ |σ1, σ2, . . . , σm−1)∑
σ Nn(σ |σ1, σ2, . . . , σm−1)

.

(4) Increment m by one. If m = n then a walk of length n has been obtained, otherwise,
m < n and the algorithm continues from step (2).

The underlying operation of the scanning method relies on determining generalized
endpoint atmospheres of length n − m + 1 for a partially generated walk, and then stepping
uniformly into each atmospheric partial walk. Generally, this is a computationally expensive
algorithm for generating self-avoiding walks; for m = 2, 3, . . . , n walks of length n − m + 1
must be counted, and this shows that the computational effort is at least given by the effort
for enumerating all walks of length n. By abandoning rigour however and settling for
approximate enumeration of only say b steps ahead at each iteration, the algorithm can be
improved significantly. This modification makes the algorithm more efficient, at the expense
of uniformity: walks are not sampled with uniform probability any more.
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The modified algorithm is implemented in the same way as the scanning method, but
instead of scanning ahead n − m + 1 steps at each iteration of the algorithm, only b steps are
scanned ahead (more precisely, only min{b, n − m + 1} are scanned ahead at each step). The
parameter b is chosen small enough to make the algorithm fast and large enough to give a
distribution over the walks which is approaching uniformity.

In this implementation, the number of walks Nn(σ, b | σ1, σ2, . . . , σm−1) of length b which
can be appended to a current walk of length m − 1 with the first step given in the σ -direction
is determined for each σ . The probability of giving the next step σ is then

pm(σ, b | σ1, σ2, . . . , σm−1) = Nn(σ, b | σ1, σ2, . . . , σm−1)∑
σ Nn(σ, b | σ1, σ2, . . . , σm−1)

(179)

and the probability of a given walk s is

Ps = 1

2d

n∏
m=2

pm(σm, b | σ1, σ2, . . . , σm−1). (180)

Since not every given walk can be completed to a walk of length n, the result is that the
probabilities Ps are not normalized over walks of length n, but

∑
s Ps < 1. This must be taken

into account.
Averages can be computed by assigning a weight 1/Ps to each walk, and then an observable

O is approximated by

〈O〉N =
∑N

i=1 O(si)/Psi∑N
i=1 1/Psi

(181)

if the walks {si}Ni=1 were sampled, with walk si obtained with probability Psi
. This

approximation depends on b and Ps .
Increasing b generally improves the numerical performance of the algorithm (at the

expense of CPU time). If b is taken equal to n − m + 1 at the mth step, then the original
scanning algorithm is uncovered with the Ps uniform so that the last expression reduces to
a simple average. Taking b = 1 at each step uncovers a method related to the Rosenbluth
method. The larger b is, the flatter the distribution over the walks sampled, while less walks
are lost to attrition since they cannot be completed into walks of length n. This improves the
estimate 〈O〉N systematically, and by tracking this as b is increased, one can determine the
uncertainties in approximate estimates of observables.

In implementations of the scanning method, b is usually increased to be at most equal to
10, and then the approximations are extrapolated to infinite b. This procedure generally gives
good results [106, 108], and the method may yet again be resurrected for further refinement
and applications in walks.

9. Pruned enriched Rosenbluth sampling (PERM)

The Rosenbluth algorithm suffers two basic flaws: the first is the attrition of walk due to
trapped conformations;’ this is a problem even for walks of length 100 in low dimensions.
The second flaw is even more serious: the dispersion of the weights of the generated walks
increases to the point that a few walks (or even a single walk) start to dominate the sample
averages. This dispersion of the weights fatally undermines the effectiveness of Rosenbluth
sampling.

Both these flaws can be overcome by the introduction of pruning and enrichment steps in
Rosenbluth sampling [44]. Walks with large weights are enriched (see [153]) in the sampling
while having their individual weights reduced, and walks with low weights are pruned. These
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measures reduce the dispersion of the weights, and (by enrichment) increase the number of
longer walks in the simulation. The enrichment and pruning steps added to the Rosenbluth
algorithm gives PERM, an acronym for ‘pruned and enriched Rosenbluth method’.

In simple sampling, enrichment is implemented by adding copies of surviving walks at a
fixed rate. Suppose that N walks are started in the simple sampling method, and that the rate of
attrition (due to trapped conformations) is α; that is, the number of surviving conformations at
length n is SN(n) � Ne−αn. To compensate for this attrition, double up each surviving chain
after every k iterations so that after the first k iterations, the number of surviving conformations
is SN(k) � 2Ne−αk .

Thus, after n-iterations, the number of surviving walks is

SN(n) � N2�n/k�e−αn. (182)

Since we wish to keep the number of walks roughly constant by this enrichment strategy, one
should choose k such that

�n/k� log 2

n
→ α > 0 (183)

as n → ∞. Thus, k ≈ �log 2/α� would be an acceptable choice. The value of α can be
measured empirically and then k can be chosen.

In the case of Rosenbluth sampling, attrition is also a serious problem; but this is
compounded by the increase in the dispersion of the weights. Enrichment can be used to
both reduce large weights and to decrease attrition of the sample size for longer walks.

Suppose that the weight of a conformation s of length n is given by

W(s) =
n−1∏
i=1

σi(s). (184)

Introduce a cut-off weight or threshold Tn at length n, and if W(s) > Tn, then enrich the
sample by a adding a copy of s to it, while at the same time reducing the weight W(s) by a
factor of 2. In other words, there are now two copies of s, but each with a weight of W(s)/2.
While this enrichment does not affect the sample average at n, continued growth of the walks
from this value of n will result in the copies growing along different trajectories, and their
enrichment has the effect of reducing the dispersion.

The problem of walks with small weights is dealt with by introducing a lower threshold
tn at length n. If a walk is grown by the Rosenbluth algorithm to length n and of weight W(s),
and W(s) < tn, then the walk is pruned (its growth is stopped and it is assigned zero weight)
with a probability 1/q where q is a parameter of the algorithm. If the walk is not pruned (with
probability 1 − 1/q), then its weight is increased by a factor of q. Normally, q = 2.

Sample averages are computed as before. If N is the number of walks that were started, then
sample averages are computed over the entire sample of pruned and enriched conformations
as in equation (168), where the weights of walks which were pruned are put equal to zero.

Algorithm 9.1 (PERM).

(1) Let Tm and tm be thresholds on the weights of a walk of length m sampled by the Rosenbluth
algorithm. Set the value of q > 1 for pruning and an integer k > 1 for enrichment.

(2) Put W = 1 and let v0 be the vertex at the origin, and determine v1 by choosing one of the
2d nearest neighbour vertices in its positive endpoint atmosphere (of size ae

+) to v0.
(3) Suppose that vm−1 has positive endpoint atmosphere of size σm−1 nearest neighbour

vertices which are not already occupied. Choose vm recursively by choosing a vertex
from the unoccupied neighbours of vm−1 with probability 1/σm−1.

(4) If σm−1 = 0 then the walk is trapped and it is rejected. A new walk is started at step (1).
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(5) Put W = Wσm−1 and increment n.
(6) If m = n, then a walk of length n and weight W is found, start the next walk at step (1).
(7) If m < n and W < tm, then with probability 1/q put W = 0 and start a new walk at step

(1). Otherwise put W → qW . Continue this walk by starting at step (2).
(8) If m < n and W > Tm, then create k copies of the walk, each of weight W/k. Grow each

copy to length n by continuing the algorithm at step (2).
(9) Start at step (1) until N walks have been started.

The thresholds tn and Tn can be adapted during the simulation. Normally, one would start
with tn = 0 and Tn large. During the simulation tn and Tn are changed while requiring Tn/tn
to stay roughly constant, say Tn/tn ≈ 10. One way in which this can be implemented is to use
the partition function Zn: suppose that a collection of N walks of length n, say (s1, s2, . . . , sN)

and weights (W(sj )) have been sampled. Then the estimate of the partition function is

〈Zn〉N = 1

N

N∑
j=1

W(sj ) (185)

and 〈Zn〉N → cn as N → ∞. The thresholds tn and Tn are then chosen by tn = c 〈Zn〉N and
Tn = C〈Zn〉N , where c and C are fixed so that C/c ≈ 10.

Approximate enumeration of walks by PERM is performed by taking averages over the
weights of walks of length n:

cest
n = 〈WN 〉n ≈ 1

N

N∑
j=1

W(sj ). (186)

Estimates of mean values of observables are computed over the weighted sample of walks by

〈O〉est
n =

∑N
j=1 O(sj )W(sj )∑N

j=1 W(sj )
. (187)

This algorithm has been used effectively to sample self-avoiding walks of impressive lengths
[44].

PERM can be implemented to sample walks from a Boltzmann distribution. In this case,
the walks should be weighted so that the partition function

〈Zn〉β,N = 1

N

N∑
i=1

W(si)e
βE(si ) → 〈W(s)eβE(s)〉 (188)

is obtained as N → ∞. Walks can be grown either as before, and then having the Boltzmann
factor attached as part of its weight, or it can be grown using importance sampling: if there
are mn nearest neighbours available for the next step, each of energy Ei for i = 1, 2, . . . , mn,
then step to vertex i with probability pn = eβEi

/∑mn

j=1 eβEj . The weights are then computed
as before, and averages are taken consistently with these weights.

9.1. Flat-histogram pruned enriched Rosenbluth sampling (flatPERM)

The average weight 〈W 〉N in Rosenbluth sampling is an estimate of the total number of walks
cn. If fluctuations in this estimate are suppressed, then improved estimates of cn can be
obtained.

In general, Rosenbluth sampling has large fluctuations for larger values of n, and so cannot
be used to accurately measure cn. PERM is one method for reducing fluctuations.

56



J. Phys. A: Math. Theor. 42 (2009) 323001 Topical Review

A further refinement in PERM can be achieved by favouring copies of walks with large
weights to grow in different ways. This is achieved as follows: let 〈W 〉N be the estimate of cn

after N walks have been sampled. If the Nth walk has weight WN , then compute

r = WN

〈W 〉N . (189)

If r > 1 then the Nth walk has a larger than expected weight, and it should be enriched. If
r > an (where an is the number of possible ways of extending the walk by adding a step), and
c = min{�r�, an}, then the walk is enriched in the sample by making c copies of it. If r < 1,
then its weight is smaller than expected, and it can be pruned. This is implemented as follows:

Algorithm 9.2 (flatPERM).

(1) Implement Rosenbluth sampling and suppose that N walks of length n and of weights WN

have been sampled.
(2) Compute r = WN/〈W 〉N .
(3) Suppose that r > 1: put c = min{�r�, sn}. Make c copies of the last walk each of weight

WN/c.
(4) If r � 1 then prune: continue growing with probability r and weight WN/r , and prune

with probability 1 − r .
(5) Continue by growing new walks from step (1).

Observe that the pruning and enriching are done after the current conformation is included
in computing 〈W 〉N . The estimate 〈W 〉N for cn is initially very wrong, but it improves with
increasing N. In this implementation, the number of states (walks) at each length n is roughly
constant—this gives a flat histogram of the number of walks sampled at each value of n.

Implementation of flatPERM produces a roughly constant number of walks at each value
of n: for each walk pruned on average, one walk is enriched. This gives a significant
improvement over Rosenbluth sampling, where attrition makes the sampling of long walks
very difficult. In figure 25, the attrition of walks in Rosenbluth sampling is measured for a
million started walks in the square lattice, with maximum possible length set to 1000. All
walks started in this simulation terminated in a trapped conformation at lengths shorter than
1000, and only a few walks (fewer than 25) of lengths longer than 500 were sampled.

Adding pruning and enrichment steps in a flatPERM implementation of a million started
walks of lengths up to 1000 gives a dramatic improvement, as shown in figure 25. In this case
the attrition is less than 10% even for n = 1000 and the histogram is more or less flat over
the entire range of n ∈ [0, 1000]. This gives a large sample of long walks, compared to the
Rosenbluth sampling.

Implementations of flatPERM require more CPU time for a given number of started walks,
compared to the Rosenbluth algorithm. This occurs because more walks are completed. The
flatPERM data in figure 25 required roughly 20 times the CPU time of the Rosenbluth data
presented there.

Normally a flatPERM simulation will start with poor estimates of the average weights 〈W 〉.
This affects the initial effectiveness of pruning and enrichment, leading to small decreases in
completed walks. This difficulty can be dealt with by not growing long walks initially: that
is, restrict the length of the first walks until statistics have built up to give better estimates of
the weights, and at this point the restriction can be removed to generate longer walks. One
particular scheme is to limit the length of walks to n < cS where S is the number of walks
generated. As the algorithm runs, S increases until n reaches its desired size at which point
the restriction is removed. This reduces the number of grown walk to roughly �S −n/c�. The
constant c is typically fixed at values between 1 and 10.
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Figure 25. Attrition of started walks in the Rosenbluth and flatPERM algorithms. The curves
above correspond to the number of surviving walks of length n. This quickly decreases to zero in
the Rosenbluth algorithm. In the case of the flatPERM algorithm, a virtually constant number of
walks is obtained after initial attrition due to thermalization of the algorithm. In these simulations
a million walks were started in each simulation, and the number of surviving walks at each value
of n is measured. The area under each curve is proportional to the total number of steps into
positive endpoint atmospheres given by the algorithms and also proportional to the CPU time of
each simulation. In this particular example, the CPU time of the flatPERM simulation is 20 times
longer than the CPU time of the Rosenbluth simulation.

The thermal implementation of flatPERM proceeds by assuming that at length n a sample
of N walks has been generated with estimated partition function

〈Zn〉β,N = 〈WeβE〉N . (190)

The threshold is

rn = Wne
βEn

〈Zn〉β,N

(191)

and the implementation of enrichment and pruning is done as before. The threshold criterion
is that each term Wne

βEn gives the same size contribution to the partition function, this gives
a flat distribution over n for any fixed choice of β.

9.2. Microcanonical implementation of flatPERM

A microcanonical implementation of flatPERM will produce estimators of cn(m) ≡ cn,m; this
is the number of walks of length n and energy m. In this incarnation of the algorithm, weights
Wn,m are computed as before but by tracking the energy as edges are added: the average
weight of walks is then computed for each value of m; this gives an estimate of cn,m:

cest
n,m = 〈Wn,m〉 = 1

N

∑
i

Wn,m(si), (192)

where Wn,m(si) = 0 if E(si) �= m. In other words, like canonical flatPERM, this algorithm is
primarily an approximate enumeration algorithm, designed to estimate the numbers cn,m.

Pruning and enrichment proceed as in algorithm 9.2 but now with r replaced by

r = Wn,m

〈Wn,m〉 (193)

at the ith step.
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Figure 26. (a) Inserting an edge into the positive generalized atmosphere of a walk. The vertex
marked with a • in the walk on the left-hand side has two generalized atmospheric edges incident
with it; one pointing in the south direction, and the other pointing in the east direction. By inserting
an edge in the south direction at this vertex, the walk on the right-hand side is obtained. On the other
hand, the bold edge in the walk on the right-hand side is a negative atmospheric edge in the walk.
By contracting it, the walk on the left-hand side is obtained. The walk on the left-hand side has
generalized atmospheric statistics a

g
+ = 14 and a

g
− = 3, and the walk on the right has atmospheric

statistics a
g
+ = 16 and a

g
− = 4. (b) Sampling generalized positive atmospheres in GARM. Starting

from the trivial walk, at each iteration a vertex • is chosen and a positive atmospheric edge is
inserted to generate the next state in the sequence.

In the microcanonical implementation the algorithm performs a random walk in n and
m, and while correlations between enriched walks still build up, there is roughly a constant
number of conformations for each size n and energy m. In this sense, the algorithm produces
a ‘flat’ histogram in (n,m); see [91] for an implementation in a model of pulled adsorbing
walks as an example.

Averages of an observable O are determined as before by the ratios

〈O〉est
n,m =

∑
(i) O(i)

n,mW(i)
n,m∑

(i) W
(i)
n,m

. (194)

The microcanonical implementation of this algorithm gives a good method to determine
canonical averages at a given fugacity β:

〈O〉est
n (β) =

∑
m Oest

n,mCest
n,meβm∑

m Cest
n,meβm

. (195)

10. The generalized atmospheric Rosenbluth method (GARM)

GARM (see [131]) is a generalized implementation of PERM in section 9, using generalized
atmospheres. A particular implementation can use either plaquette atmospheres (see figure 13),
or generalized atmospheres such as in figures 14 and 15. If endpoint atmospheres are used,
then GARM reduces to PERM. The basic operation of GARM is predicated on a generalized
counting formula which is derived below.

Consider a self-avoiding walk s and its associated generalized atmospheric statistics a
g
+(s)

and a
g
−(s) as illustrated in figures 14 and 15. A new walk s ′ can be constructed from s by

inserting a positive atmospheric edge into s, as illustrated in figure 26. In this case s ′ is a
successor of s, and |s ′| = |s| + 1. We call s a predecessor of s ′. This construction will be
called a positive atmospheric move (in the generalized atmosphere).

If S denotes the state space of walks from the origin, then positive atmospheric moves
define a graph Gg on S with two vertices (walks) connected by an edge if the first is a
predecessor of the second (see figure 22). We call this association between predecessors and
successors linkages in the atmospheric graph on the state space S.
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Negative atmospheric moves are similarly defined, but by deleting a negative atmospheric edge
in the walk instead. Since the last edge in a walk is always a negative atmospheric edge, it is
always possible to perform a negative atmospheric move, unless the walk has length 0 and is
only the vertex at the origin. By recursively performing negative atmospheric moves, a walk
is reduced until it has length 0. Since each negative atmospheric move can be reversed to a
positive atmospheric move, this observation implies that the generalized positive atmospheric
move is irreducible; there is a path in the atmospheric graph Gg from the origin to any given
walk.

Consider the following sampling scheme in S. Let φ0 be the walk of length 0 and also be
the initial state. Generate states (walks) φ1, φ2, . . . by applying positive atmospheric moves:
φj is obtained from φj−1 by a uniformly chosen positive atmospheric move on φj−1.

This generates a sequence φ = φ0φ1 · · · φN of length N + 1 in S where the state φj is a
walk of length j . Since the state φj is obtained from φj−1 by uniformly selecting a randomly
chosen positive atmospheric move, the conditional probability that φj follows φj−1 is

P(φj |φj−1) = 1

a
g
+(φj−1)

. (196)

The probability to sample a given sequence φ is therefore

Pr(φ) =
|φ|−1∏
j=1

P(φj |φj−1) =
|φ|−1∏
j=1

[
1

a
g
+(φj−1)

]
, (197)

where |φ| = N + 1 is the number of states in the sequence φ.
The final state of the sequence φ is a specific state φN ≡ τ , and the probability that a

sequence terminates in the state τ is given by

Pr(τ ) =
∑
φ→τ

|φ|−1∏
j=1

[
1

a
g
+(φj−1)

]
, (198)

where the sum is over all sequences φ in S which starts as the trivial state φ0 of one vertex in
the origin and final state which is τ .

The key to the algorithm is to assign a weight W(φ) to each sequence: in the case here,
we shall show that it is appropriate to define the weight of a given sequence φ by

W(φ) =
|φ|−1∏
j=1

[
a

g
+(φj−1)

a
g
−(φj )

]
. (199)

Each factor in this product is the ratio of the positive atmosphere of the current state, divided
by the negative atmosphere of the next state. This choice of the weight leads to the following
lemma:

Lemma 10.1. The average 〈W(φ)〉 of the weight of sequences that end in the state τ is unity:

〈W(φ)〉 =
∑
φ→τ

W(φ)Pr(φ) = 1.

Proof. Consider the average

〈W(φ)〉 =
∑
φ→τ

|φ|−1∏
j=1

[
a

g
+(φj−1)

a
g
−(φj )

] [
1

a
g
+(φj−1)

]
=
∑
φ→τ

|φ|−1∏
j=1

[
1

a
g
−(φj )

]
. (200)

The last term can now be interpreted as the probability of the walk τ that is reduced to the
single vertex φ0 by uniformly applying negative atmospheric moves. This probability is 1,
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Table 2. Approximate enumeration with GARM.

n cn 〈W 〉n

0 2 1
1 4 4
2 12 12
3 36 36.0023
4 100 100.005
5 284 283.969
6 780 780.187
7 2172 2173.69
8 5916 5918.86
9 16 268 16 275.1

10 44 100 44 098.6
11 120 292 1.203 44 × 105

12 324 932 3.250 39 × 105

13 881 500 8.816 24 × 105

14 2374 444 2.374 73 × 106

15 6416 596 6.416 77 × 106

16 17 245 332 1.724 57 × 107

17 46 466 676 4.645 54 × 107

18 124 658 732 1.246 46 × 108

19 335 116 620 3.350 45 × 108

20 897 697 164 8.975 97 × 108

21 2408 806 028 2.408 89 × 109

22 6444 560 484 6.442 50 × 109

23 17 266 613 812 1.726 76 × 1010

24 46 146 397 316 4.616 92 × 1010

25 123 481 354 908 1.236 61 × 1011

since the positive atmospheric moves are irreducible, and since every sequence of negative
atmospheric moves starting in τ necessarily terminates in the trivial walk. �

By summing 〈W(φ)〉 over all last states τ which are walks of length n, one obtains the counting
formula

∑
|τ |=n

〈W(φ)〉 =
∑
φ→τ
|τ |=n

|φ|−1∏
j=1

[
1

a
g
−(φj )

]
= cn, (201)

where cn is the number of walks of length n. Thus, by determining the average of the weights
in an implementation of this algorithm, the numbers cn are estimated. In table 2, the results
of a simulation using GARM are compared to exact enumeration data from [83]. In this case,
GARM sampled one million sequences of length n = 25 to compute average weights as in
equation (201).

If the entire argument above is repeated for endpoint atmospheres, then the Rosenbluth
algorithm is recovered. It is not clear that the plaquette atmospheres can be used; the positive
and negative plaquette atmospheric moves are not irreducible on the set of walks since they
leave the endpoints of the walk fixed in the lattice.
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We call the implementation using generalized atmospheric moves GARM, an acronym
for ‘generalized atmospheric Rosenbluth method’.

The implementation of GARM is now similar to the implementation of the Rosenbluth
algorithm.

Algorithm 10.2 (GARM). This implementation of GARM starts N walks of length at most n.

(1) Put W = 1 and let φ0 be the trivial walk which is the vertex at the origin, and determine
φ1 by uniformly selecting a positive atmospheric move and executing it. Update W by
multiplying it by

[
a

g
+(φ0)

/
a

g
−(φ1)

]
.

(2) Determine the positive atmosphere of φj−1 and suppose it has size a
g
+(φj−1). Select a

positive atmospheric move uniformly and construct φj by executing it. Determine the
size of the negative atmosphere of φj , a

g
−(φj ).

(3) If a
g
+(φj−1) = 0 then the state is trapped and the sequence φ is terminated. A new

sequence is started at step (1).
(4) Put W = W

[
a

g
+(φj−1)

/
a

g
−(φj )

]
.

(5) If j < n, then determine the next state by going to step (2). If j = n then a walk of length
n and weight W has been generated. Continue by starting a new walk at step (1) until N
walks are generated.

The implementation in algorithm 10.2 allows for the possibility of trapped conformations
with zero positive atmospheres; this rarely occurs in the case of generalized atmospheres. This
means that trapped conformations are encountered only rarely and attrition is not a serious
problem. Since the calculation of generalized atmospheres for walks of length n is O(n), it
follows that the computational effort in generating a single sequence with final walk of length
n is O(n2). GARM slows down significantly with increasing length of the sampled walks.
Implementations using the techniques developed by Clisby [18] should improve on this.

10.1. Flat histogram generalized atmospheric Rosenbluth method (flatGARM)

Variances of the computed weights 〈W 〉 in a GARM simulation do not increase as quickly
as in the Rosenbluth algorithm. However, with increasingly long sequences, variances do
eventually increase, and these make good estimates of average weights more difficult. As in
the case of PERM, enrichment and pruning can be introduced to improve the sampling, giving
a flat histogram method similar to flatPERM. This is the flatGARM algorithm [131].

GARM with pruning and enrichment proceeds as for PERM, by tracking the weights of
a given sequence. If this weight grows too small, then the sequence can be pruned, and if the
weight grows too large, then it can be enriched.

Suppose that the j th state φj in a sequence has weight W(φj ). Then the implementation
proceeds by the calculation of the parameter r

r = W(φj )

〈W 〉j , (202)

where 〈W 〉j is the average of the weights of the j th state in all sequences generated thus far
(including the current sequence). That is, the average is given by

〈W 〉j = 1

N

N∑
k=1

W
(
φk

j

)
, (203)

where φk
j is the j th state in the kth sequence φk .2

2 Observe that even if the number of sequences was increased by enrichment that all weights are summed up, but
that they are divided by the number of started sequences, including the number of pruned sequences.
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Calculating W(φj ) to determine 〈W 〉j requires the negative atmosphere of the state
φj+1, which have not been constructed yet—to avoid this problem, the algorithm may be
implemented by constructing the next state φj+1, then to determine enrichment at state φj (and
then discarding φj+1).

Alternatively, extrapolating the negative atmosphere of the not yet constructed φj+1 from
φj has also been shown to work well in applications. For generalized atmospheres it is not
unreasonable to suppose that a

g
+(φj+1) = a

g
−(φj )+1, and this guesstimate works well in actual

simulations (it has the advantage that we do not need to construct φj+1 before deciding on
pruning or enrichment).

Once the parameter r is computed, pruning and enrichment are implemented as follows:
if r < 1, then retain the current sequence with probability r and update the weight
W(φj ) → W(φj )/r . Otherwise, prune the sequence (with probability 1 − r).

If r > 1 then enrich the sequence: compute c = �r� with probability r −�r�, and c = �r�
otherwise. Make c copies of the sequence, each with weight W(φj )/c and continue growing
from each, recursively pruning and enriching at each step.

The implementation of flatGARM proceeds as follows:

Algorithm 10.3 (flatGARM). Determine the number of sequences to be started, and n, the
maximum length of each sequence.

(1) Suppose that N − 1 sequences have been started, and that the Nth sequence will be grown
from the state φ0 which is the trivial walk composed of one vertex at the origin.

(2) Suppose that the current sequence has been grown to the j th state φj of length j < n,
and weight W(φj ) = Wj .

(3) Compute r = Wj/〈W 〉j , where 〈W 〉j is the average weight of all states of length j

encountered thus far, including the current state φj .
(4) Suppose that r > 1: put

c =
{�r�, with probability r − �r�,
�r�, otherwise.

Make c copies of φj each of weight Wj/c. Grow each copy of φj independently using
GARM to the next states φj+1 and enrich and prune each from step (2) above. If the
sequence has reached its desired length, then start a new sequence at step (1).

(5) If r � 1 then prune: with probability 1 − r prune the current sequence and start growing
the next sequence from step (1) above. With probability r put Wj → Wj/r and continue
growing the sequence using GARM to the next state φj+1. If the sequence has reached its
desired length, then start a new sequence at step (1). Otherwise, proceed by enrichment
and pruning from step (2).

This implementation of flatGARM introduces some attrition of started sequences due to
pruning, but the parameter r is designed such that it produces a flat histogram over the lengths
of the walks: the pruned sequences are eventually replaced by enriched sequences.

A major advantage over PERM and flatPERM encountered here is that correlations are
suppressed in the enrichment process. While endpoint atmospheric moves in PERM or
flatPERM leave initial parts of the walks unchanged up to the enrichment point, producing
persistent correlations between these walks, the generalized atmospheric moves quickly change
these parts of the walk, so that correlations between enriched copies soon become statistically
of lesser significance.
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A thermal implementation of GARM is similarly obtained by computing estimates of the
partition function at a fugacity β:

Zest
n (β) = 1

N

N∑
k=1

W(φk
j )e

βE(φk
j ) = 〈WeβE〉j , (204)

where φk
j is the j th state of length n in the kth sequence φk . In algorithm 10.3, the calculation

of r is replaced by

r = W(φj )e
βE(φj )

Zest
n (β)

(205)

for state φj . The rest of the implementation is unchanged. This will enrich and prune states
such that a flat histogram over the partition function at fugacity β is obtained.

10.2. Introducing neutral atmospheres into GARM and flatGARM

The discussion so far has centred on the implementation of sampling along sequences φ using
positive atmospheres, and computing weights by using negative atmospheres. This can be
generalized by the introduction of a neutral atmosphere in the algorithm.

Let a
g

0 be an arbitrary neutral atmosphere defined on walks, for example the pivot neutral
atmosphere, or the generalized exchange neutral atmosphere. GARM or flatGARM can
be implemented by choosing at each step either a positive atmospheric move or a neutral
atmospheric move with probabilities

P+ = P(positive atmospheric move) = a
g
+(φj )

a
g
+(φj ) + a

g

0 (φj )
, (206)

P0 = P(neutral atmospheric move) = a
g

0 (φj )

a
g
+(φj ) + a

g

0 (φj )
. (207)

The corresponding weight of a sequence φ is given by

W(φ) =
|φ|−1∏
j=1

a
g
+(φj−1) + a

g

0 (φj−1)

a
g
−(φj ) + a

g

0 (φj )
. (208)

The mean weight in this implementation, 〈W(φ)〉 over all sequences ending in a state of
length n, is again equal to cn, and the proof of this is similar to that of lemma 10.1. Further
generalizations of this give the GAS-algorithm, which is discussed below. A flat-histogram
implementation with neutral atmospheric moves follows the steps in algorithm 10.3, using
enrichment and pruning to sample asymptotically uniform from walks of given length. Since
the implementation of generalized positive atmospheres is irreducible, the addition of neutral
atmospheric moves does not change this, but level j , denoted by φj , in a realized sequence
φ, is not a walk of length j anymore, but will generally have length less than j . This implies
that the introduction of neutral atmospheric moves will improve sampling at smaller lengths,
and that longer sequences φ will be needed to collect sufficient data at large values of n. One
may introduce a parameter to bias the sampling for or against neutral atmospheric moves by
suitably adjusting the expressions for P+ and P0 above.

10.3. The microcanonical implementation of flatGARM

The flatGARM algorithm can be implemented to collect data in the microcanonical ensemble.
Let cn(m) ≡ cn,m be the number of walk of length n and ‘energy’ E = m. A microcanonical
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implementation of flatGARM will proceed as above, but with cn replaced by cn,m: the energy
E of the sequence φ is tracked such that state φj has energy E(φj ).

An estimator for cn,m is obtained from equation (201) by noting that by restricting the
sum to sequences ending in state τ of energy m = E(τ), one obtains

〈W(φ)〉 =
∑
φ→τ

W(φ)P r(φ) =
∑
φ→τ

|φ|−1∏
j=1

[
1

a
g
−(φj )

]
= 1, (209)

where Pr(φ) is given by equation (198).
The proof now follows the same arguments as in lemma 10.1. Summing the left-hand

side above over all sequences φ ending in the state τ of length n and energy m then shows that∑
φ→τ
|τ |=n

E(τ)=m

〈W(φ)〉 = 〈W(φ)〉n,m = cn,m (210)

since there are cn,m states τ of length n and energy m, and where 〈W(φ)〉n,m is the mean weight
of sequences ending in states of length n and energy m.

Thus, the estimator for the number of walks of length n and energy m is given by the
average weight

cest
n,m = 1

N

N∑
k=1

Wn,m(φk), (211)

where φk is the kth sequence, and Wn,m(φk) is the weight of the sequence φk when φk is a
state of length n and energy m.

To generate a flat histogram in both energy and length, suppose that the current state in a
simulation is φj of length j , and compute the parameter r by putting

r = W(φj )

〈Wj,m〉 , (212)

where W(φj ) is the weight of state φj of length j and energy m and 〈Wj,m〉 is the average
weight of states of length j and energy m, measured so far in this simulation, including the
weight of φj . If r < 1, then the sequence can be pruned with probability r as before, and if
r > 1 it can be enriched. Thus, walks of energy m are enriched in the ensemble if they have
large weight and pruned if they have small weight. The enrichment and pruning conspires to
keep r of order unity, and a sequence will have weight close to the average weight.

The implementation of the algorithm proceeds now as follows:

Algorithm 10.4 (Microcanonical flatGARM).

(1) Implement GARM and suppose that N − 1 sequences have been started and completed
and that the current sequence φ has current state a walk φj of length j , energy m and
weight Wj ≡ W(φj ).

(2) Compute r = Wj/〈Wj,m〉, the average weight of all states of length j and energy m
encountered thus far, including the current state φj .

(3) Suppose that r > 1: put

c =
{�r�, with probability r − �r�,
�r�, otherwise.

Make c copies of φj each of weight Wj/c. Grow each copy of φj independently using
GARM to the next states φj+1 and enrich and prune each from step (1) above.
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Figure 27. Generalized atmospheric moves in the GAS algorithm sets up a map f : S → S which
maps predecessors in S to successors in S. f may be represented as a digraph as illustrated above.
Observe that the outdegree of any predecessor vertex in S is equal to the indegree of any successor
vertex. This is necessarily true, since every atmospheric move is reversible. That is, if s ∈ S is a
state, then indeg s = outdeg s, since every arc into s is also an arc out of s.

(4) If r � 1 then prune: put Wj → Wj/r and determine the next state φj+1 with probability
r by using GARM. Then proceed from step (1) above. Otherwise, prune the current
sequence with probability 1 − r and start growing the next sequence by using GARM
from step (1) above.

An implementation of this algorithm with endpoint atmospheres gives a microcanonical
implementation of flatPERM. The implementation with other atmospheric moves requires
careful coding to optimize the efficiency of the algorithm, since the calculation of generalized
atmospheres are more demanding of CPU time.

11. Generalized atmospheric sampling

Generalized atmospheric sampling (GAS) is an implementation of general atmospheric moves
to sample walks (states) along a sequence φ. The method generalizes GARM by implementing
negative atmospheric moves in addition to neutral and positive atmospheric moves.

Consider a self-avoiding walk s together with its associated atmospheric statistics
a

g
+(s), a

g

0 (s) and a
g
−(s) of positive, neutral and negative atmospheres together with their

corresponding atmospheric moves. We require that (1) the set of atmospheric moves is
irreducible, (2) that every positive atmospheric move is reversible by a corresponding negative
atmospheric move, and vice versa, and (3) that every neutral atmospheric move is reversible
by a corresponding neutral atmospheric move.

If s is a given walk, then a walk s ′ can be constructed from s by selecting a positive,
neutral or negative atmospheric move. Generally, the atmospheric move may insert or delete
edges in s, or in the case of a neutral atmosphere, change the conformation of s in some way
which preserves its length. We call s the predecessor of s ′, and s ′ is the successor of s.

Since each atmospheric move is reversible, s is both a predecessor and a successor of s ′

(and vice versa).
Let S be the state space of all walks, then the atmospheric moves define linkages in S as

in figure 22. We now generalise the graph of linkages. Let f : S → S be a map which maps
the states in S to S such that (s, s ′) ∈ f if s is a predecessor of s ′. Then f may be represented
as a digraph with vertex set two copies of S and arcs from vertices in a copy S (the predecessor
vertices) to vertices in the second copy of S (the successor vertices). We illustrate this in
figure 27.
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Figure 28. Sampling in the GAS-algorithm. The algorithm is initiated in state φ0 in level 0,
marked by O. A successor state in level 1 is selected as the next state by applying an atmospheric
move (positive, neutral or negative). If the current level is j , then the state φj+1 in level j = 1
is selected from the successors of state φj . Eventually the sequence φ of states is a path in the
diagram as illustrated above. The dotted arcs are possible atmospheric moves and are directed
from bottom to top. The sequence φ is denoted by the solid path, and steps up through the levels.
Observe that the indegree of each vertex in this digraph is equal to the outdegree. If s ∈ S is a state
in level j , then indeg s = outdeg s = a

g
+(s) + a

g

0 (s) + a
g
−(s).

Let φ0 ∈ S be an initial state in the algorithm. Successors of φ0 are states φ1 which can be
reached from φ0 by implementing a (positive, neutral or negative) atmospheric move. Once φ1

has been selected as the next state, then φ2 can be selected from amongst the successors of φ1.
Generally, φj+1 is selected from amongst the successors of φj , but necessarily with uniform
probability. This process builds a sequence φ = φ0φ1φ2 · · ·φj · · · of states by repeated
compositions of the map f defined in figure 27 and above.

The level of a state φ is its position in the sequence φ = φ0φ1φ2 · · · φj · · ·. For example,
φ0 has level 0 and φj has level j .

The sampling of states from the successors of the current state is the basic operation of
the GAS-algorithm. When the j th state is sampled, the algorithm is said to sample in level
j , and we illustrate this in figure 28: the algorithm starts in level zero, and then realizes a
sequence φ = φ0φ1φ2 · · ·φj · · · by sampling successors level by level; the state φj is sampled
from the j th level. Finally, the sequence φ is a directed path through the levels in the digraph
in figure 28 such that state φj is in level j .

Observe that at this point S is the collection of all walks of arbitrary length, an infinite set.
A small modification to the algorithm can be made so that S is a finite set: define all walks in
S of length n to have zero positive atmospheres. That is, if the state φj of length n is sampled
by GAS, then its positive atmosphere is zero. In this case, the number of walks which can be
reached from the trivial walk of length zero has length at most n, and this collection of walks is
finite. This modification does not change the GAS sampling, as long the atmospheric moves
are still collectively irreducible on the set of walk of length at most n. The sampling is still

67



J. Phys. A: Math. Theor. 42 (2009) 323001 Topical Review

along a sequence φ from level to level as in figure 28, but now S is a finite set. We will use
these observations to define a flat histogram version of GAS below.

Suppose that state φj in level j in GAS-sampling has been realized. Introduce the
parameter β (possibly dependent on the number of edges of state φj ) and perform an
atmospheric move with probabilities

P+ = P(positive atmospheric move) = βa
g
+(φj )

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

, (213)

P0 = P(neutral atmospheric move) = a
g

0 (φj )

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

, (214)

P− = P(negative atmospheric move) = a
g
−(φj )

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

, (215)

which are normalized to sum up to unity.
The purpose of the GAS-algorithm is to compute a weight W(φ) for a realized sequence

φ of states. Implementation of the algorithm is as follows:

Algorithm 11.1 (GAS). This algorithm samples a long sequence φ = φ0φ1φ2 · · · φj · · · in the
state space S of walks where state φj is said to be in level j .

(1) Define the state φ0 in level 0 (normally the trivial walk composed of the single vertex
at the origin with length 0 edges). Set β at a convenient value, and let L be the desired
length (number of states) in the sequence φ.

(2) Initialize the weight W of the sequence φ by putting W0 = 1.
(3) If state φj in level j and of weight Wj has been determined, then compute the atmospheres

a
g
+(φj ), a

g

0 (φj ) and a
g
−(φj ).

(4) Update Wj by putting

W ′
j+1 = (ag

−(φj ) + a
g

0 (φj ) + βa
g
+(φj )

)
Wj.

(5) Compute the probabilities in equations (213)–(215). Use these to determine whether the
next atmospheric move is positive, neutral or negative. Perform an atmospheric move of
the kind selected by uniformly choosing a move from list of possible moves. This gives
the state φj+1.

(6) Define the function σ in the sequence φ by

σ(φj , φj+1) =
{

−1, if φj+1 follows φj through a+,

+1, if φj+1 follows φj through a−.

That is, if φj → φj+1 through a positive (negative) atmospheric move, then σ(φj , φj+1) =
−1(+1). Update the weight by

Wj+1 = W ′
j+1β

σ(φj ,φj+1)(
a

g
−(φj+1) + a

g

0 (φj+1) + βa
g
+(φj+1)

) .
This produces the next state φj+1 in the sequence φ.

(7) If the sequence has reached a desired level, say j = L, then terminate the algorithm. It
has generated a sequence φ of weight WL. Otherwise, proceed to step (3) to find the next
state.
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Define �j to be length (number of edges) of state φj (which is a walk in S). Define |φ| to
be the number of levels in a sequence realized by GAS. If GAS realizes a sequence φ with |φ|
levels, then the weight of φ is

W(φ) =
⎡
⎣|φ|−1∏

j=0

[
a

g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

a
g
−(φj+1) + a

g

0 (φj+1) + βa
g
+(φj+1)

]⎤⎦ |φ|−1∏
j=0

βσ(φj ,φj+1). (216)

Define P(φ) to be the number of positive atmospheric moves in φ, and N(φ) to be the number
of negative atmospheric moves in φ. Then P(φ) − N(φ) is equal to �L, the length of the final
state φL in φ. The products above telescope down to the much simplified expression:

W(φ) =
[

a
g
−(φ0) + a

g

0 (φ0) + βa
g
+(φ0)

a
g
−(φL) + a

g

0 (φL) + βa
g
+(φL)

]
βN(φ)−P(φ). (217)

Next, the probability of realizing a particular sequence φ is given by

P(φ) =
⎡
⎣|φ|−1∏

j=0

[
1

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

]⎤⎦βP(φ) (218)

since the probability of a positive atmospheric move is given by β
/(

a
g
−(φj ) + a

g

0 (φj ) +
βa

g
+(φj )

)
and the probability of a negative or neutral atmospheric move is given by

1
/(

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

)
at level j .

The expected value of the weight over all sequences terminating in the state τ is then
given by

〈W(φ)〉τ =
∑

φ:φ0→τ

W(φ)P (φ)

=
∑

φ:φ0→τ

⎡
⎣|φ|−1∏

j=0

[
1

a
g
−(φj+1) + a

g

0 (φj+1) + βa
g
+(φj+1)

]⎤⎦βN(φ), (219)

where the summation over φ : φ0 → τ is over all sequences starting from the trivial state φ0

and ending in state τ .
Consider a sequence φ : φ0 → τ and reverse each step along it to get the backwards

sequence φ′ : τ → φ0. Since the indegrees of any state in the derivative graph equal the
outdegree of the same state, the atmospheres of any state in the sequence φ′ are equal to the
corresponding state in the forward sequence φ. Now each positive atmospheric step in φ is
a negative atmospheric step in φ′, and vice versa. Hence N(φ) = P(φ′) and P(φ) = N(φ′)
and we can write the last summation as a sum over the backwards sequences φ′:

〈W(φ)〉τ =
∑

φ′:τ→φ0

⎡
⎣|φ′|−1∏

j=0

[
1

a
g
−(φ′

j+1) + a
g

0 (φ′
j+1) + βa

g
+(φ′

j+1)

]⎤⎦βP(φ′). (220)

The summand in the above is the probability that a sequence φ′ starting in the state τ will
terminate in the trivial state φ0 if positive atmospheric steps are given with probability

P + = βa
g
+(φ′

j+1)

a
g
−(φ′

j+1) + a
g

0 (φ′
j+1) + βa

g
+(φ′

j+1)
, (221)

neutral atmospheric moves with probability

P 0 = a
g

0 (φ′
j+1)

a
g
−(φ′

j+1) + a
g

0 (φ′
j+1) + βa

g
+(φ′

j+1)
, (222)
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and negative atmospheric moves with probability

P − = a
g
−(φ′

j+1)

a
g
−(φ′

j+1) + a
g

0 (φ′
j+1) + βa

g
+(φ′

j+1)
. (223)

If the set of atmospheric moves is irreducible, and if the mean probabilities of positive and
negative atmospheric moves satisfy

〈P +〉� � 〈P −〉� (224)

over the entire range of lengths of walks in the chain, then this probability (that the chain
terminates at the trivial state) is bigger than zero, since the atmospheric moves are reversible
and the entire process is a (biased) random walk on the integers which is an ergodic Markov
chain.

The above is in particular true if β in equation (223) satisfies

β �
〈
a

g

1

〉
�〈

a
g
+

〉
�

∀�, so that β � inf
�

[〈
a

g
−
〉
�〈

a
g
+

〉
�

]
. (225)

In this event, the mean of the weight of the sequence φ ending in state τ is given by

〈W(φ)〉τ = P(φ0|τ), (226)

where P(φ0|τ) is the conditional probability that the (backwards) chain will terminate in state
φ0, given that it started in state τ . Summing this over all walks τ of length n shows that∑

|τ |=n

〈W(φ)〉τ = cn〈P(φ0|τ)〉n, (227)

where cn is the number of walks of length n, and where 〈P(φ0|τ)〉n is the mean conditional
probability that sequences starting in a state τ of length n will terminate in φ0 stepping with
backwards probabilities P +, P 0 and P −.

Similarly, for walks σ of length m it follows that∑
|σ |=m

〈W(φ)〉σ = cm〈P(φ0|σ)〉m. (228)

If the sequence φ is asymptotically long, then the mean conditional probabilities 〈P(φ0|τ)〉n
and 〈P(φ0|σ)〉m become independent of n and m, since the backwards chain is a recurrent
Markov process if β is small enough. Thus, these factors cancel when the ratio of
equations (227) and (228) is taken. This gives

cn

cm

=
∑

|τ |=n〈W(φ)〉τ∑
|σ |=m〈W(φ)〉σ . (229)

In particular, if m = 0, then c0 = 1 and

cn =
∑

|τ |=n〈W(φ)〉τ
N0

, (230)

since the weight of a sequence terminating in the trivial state φ0 is one, and where N0 is the
number of visits of the sequence φ to the state φ0. This last expression is simply the ratio of
the accumulated weight of states of length n along the sequence φ, to the accumulated weight
of the trivial state.

In practical implementations, the total (unnormalized) accumulated weight∑
|τ |=j 〈W(φ)〉τ is collected along sequences φ realized by the algorithm. Ratios of these

accumulated weights produce estimates of ratios of cn as in equations (229) and (230).
Normally a simulation will proceed by generating a sequence φ with L levels (where L is
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large), and accumulated weights are binned for each value of n. This gives the accumulated
weights in equation (229) from which cn can be estimated.

The implementation of GAS proceeds by the realizing N independent sequences φ and
computing weights for each. This provides one with independent estimates for cn/cm, from
which data analysis can be done. As for the GARM algorithm, GAS is in principle an
approximate enumeration algorithm, and we shall see below that a flat histogram version can
be implemented.

11.1. Flat histogram generalized atmospheric sampling (flatGAS)

In this section, a method for sampling walks by GAS of lengths � ∈ [0, nmax] is described.
The algorithm will also produce a flat histogram over (0, nmax), sampling states of length �

uniformly in [0, nmax], except at the endpoints of this interval.
Consider the interval [0, nmax], and suppose that GAS has been used to sample along a

sequence φ so that state φj was sampled at level j . The length of φj is �j (this is the number
of edges in the walk corresponding to φj ).

A restriction on the lengths �j can be built into GAS as follows: define the positive
atmospheres of states in S of length � = nmax to be equal to zero. In other words, if φj ∈ S

and �j = nmax, then a
g
+(φj ) = 0.

This imposition is completely artificial in the sense that a (non-zero) positive atmosphere
can be defined of states of length nmax, but that we set this to be equal to zero. The effect of
this is that states of lengths longer than nmax cannot be reached by GAS if it uses the trivial
starting state φ0 which is the trivial walk of length zero. Thus, with this change, GAS is
not irreducible on walks anymore, and the algorithm will fail to generate sequences φ which
include states of length longer than nmax.

However, if we consider the state space S(nmax) of walks of lengths in [0, nmax], then the
algorithm is irreducible on S(nmax) if any state φj of length �j � nmax can be reduced to the
trivial walk by the application of negative atmospheric moves. This turns out to be the case if
either generalized atmospheric moves or endpoint atmospheric moves are used in GAS.

An implementation of GAS on [0, nmax] proceeds exactly as before, with the exception
that states of length nmax have zero positive atmospheres. The algorithm operates by executing
a (biased) random walk on the integers in [0, nmax], and because it is irreducible, it will
sample all walks of lengths � ∈ [0, nmax] with positive probability. The aim is next to sample
uniformly in (0, nmax).

In GAS, the lengths of states are controlled by the parameter β defined in algorithm 11.1.
This parameter is restricted by equations (224) and (225). We define the flatGAS algorithm
by making β dependent on �: in equation (224), choose β� such that

〈P +〉� = 〈P −〉� (231)

and replace β by β� in equations (213)–(215). In particular, for each value of � ∈ (0, nmax),

β� =
〈
a

g
−
〉
�〈

a
g
+

〉
�

, (232)

while β0 = 1 by default and where βnmax = 0. This implies that for j = 1, 2, 3, . . . , nmax − 1,

P+ = P(positive atmospheric move) = β�j
a

g
+(φj )

a
g
−(φj ) + a

g

0 (φj ) + β�j
a

g
+(φj )

, (233)

P0 = P(neutral atmospheric move) = a
g

0 (φj )

a
g
−(φj ) + a

g

0 (φj ) + β�j
a

g
+(φj )

, (234)
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P− = P(negative atmospheric move) = a
g
−(φj )

a
g
−(φj ) + a

g

0 (φj ) + β�j
a

g
+(φj )

, (235)

with the result that 〈P+〉� = 〈P−〉� for each � ∈ (0, nmax).
With this choice of β�, for each value of � = (0, nmax), GAS will select a longer walk as

the next state with average probability equals to the average probability of selecting a shorter
walk as the next state. Thus, GAS executes a random walk on [0, nmax] which is locally still
biased, but on average is unbiased in the lengths of the states. Since the algorithm is ergodic
on this interval, it will sample asymptotically from the uniform distribution on (0, nmax) and
visit the states of length 0 and nmax half as frequently as the states of lengths in (0, nmax).

The implementation proceeds as follows:

Algorithm 11.2 (flatGAS). This algorithm samples along a sequence φ = φ0φ1φ2 · · · φj · · ·
in the state space S(nmax) of walks where state φj is said to be in level j and has length �j .
Sequences are sampled until a total of N independent sequences have been completed.

(1) Define the state φ0 in level 0 (normally the trivial walk composed of the single vertex at
the origin with length 0 edges). Set β� at a convenient value for each � ∈ [0, nmax], and
let L be the desired length (number of states) in the sequence φ.

(2) Initialize the weight W of the sequence φ by putting W0 = 1.
(3) If state φj in level j and of weight Wj has been determined, then compute the atmospheres

a
g
+(φj ), a

g

0 (φj ) and a
g
−(φj ). Note that a

g
+(φj ) = 0 of �j = nmax.

(4) Update Wj by putting

W ′
j+1 = (ag

−(φj ) + a
g

0 (φj ) + β�j
a

g
+(φj )

)
Wj.

(5) Compute the probabilities in equations (233)–(235). Use these to determine whether the
next atmospheric move is positive, neutral or negative. Perform an atmospheric move of
the kind selected by uniformly choosing a move from list of possible moves. This gives
the state φj+1.

(6) Define the function σ in the sequence φ by

σ(φj , φj+1) =
{

−1, if φj+1 follows φj through a+,

+1, if φj+1 follows φj through a−.

That is, if φj → φj+1 through a positive (negative) atmospheric move, then σ(φj , φj+1) =
−1(+1). Update the weight by

Wj+1 =
W ′

j+1β
σ(φj ,φj+1)

�j+1(
a

g
−(φj+1) + a

g

0 (φj+1) + β�j+1a
g
+(φj+1)

) .
This produces the next state φj+1 in the sequence φ.

(7) If the sequence has reached a desired level, say j = L, then terminate the sequence,
otherwise proceed to step (3) to find the next state. If the sequence was terminated, then
update estimates for β� for each � ∈ [0, nmax] by computing

β� =
〈
a

g
−
〉
�〈

a
g
+

〉
�

.

With this new set of β�, start a new sequence from step (1). Repeat this until a desired
number N of sequences have been realized. If each of the sequences φ is long, then each
new sequence will generate a flatter histogram over the lengths � ∈ [0, nmax].
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Figure 29. Flat histogram sampling in the flatGAS-algorithm. The solid bars give the values of
β� as a function of � on the right-hand side scale. β0 = 1 by definition and is left away, since the
probability of stepping from the walk of length 0 to a walk of length 1 is 1/2d, independent of β0.
In this simulation, nmax = 24 and so β24 = 0. The values of β� were computed by atmospheric
ratios (see equation (232)) from an earlier run. The binning of states of length � ∈ [0, 24] in
a sequence of length 100 000 with β� as given are indicated by the open bars with scale on the
left-hand axis. The states with � = 0 and � = 24 were sampled about half as frequently as those
states with � ∈ (0, 24).

Suppose that flatGAS has sampled along a sequence φ in S(nmax) of length |φ|, and with states
φj of lengths �j at levels j . Then the weight of the sequence φ is given by

W(φ) =
[

a
g
−(φ0) + a

g

0 (φ0) + β�0a
g
+(φ0)

a
g
−(φL) + a

g

0 (φL) + β�L
a

g
+(φL)

] |φ|−1∏
j=0

β
σ(φj ,φj+1)

�j
. (236)

The argument proceeds from here similarly as set out in GAS above: if the sequence φ is
asymptotically long on the finite state space S(nmax), then the mean conditional probability
〈P(φ0|τ)〉n that the backwards sequence φ will terminate in φ0 becomes independent of n,
since the backwards chain is now an irreducible and recurrent Markov process in a finite state
space. In particular, 〈P(φ0|τ)〉n is asymptotically independent of φ0, and if ratios of the mean
accumulated weights are taken, then∑

|τ |=n〈W(φ)〉τ∑
|σ |=m〈W(φ)〉σ = cn

cm

. (237)

The implementation of flatGAS proceeds by realizing N independent sequences φ and
computing weights for each while updating the values of β� following each sequence φ. If the
initial choices for β� were erroneous, updated estimates quickly improve, and eventually a flat
histogram of states on the interval (0, nmax) is obtained, while the states of length 0 and nmax

are visited about half as often on average (flatGAS performs a random walk on the integers
in [0, nmax], with reflecting boundaries, and hence the states 0 and nmax will be visited half as
often as those in (0, nmax)).

In figure 29, an example of flatGAS sampling of walks using generalized atmospheres is
given. The length of the sequence was L = 100 000 levels, and values of β� were computed
from an earlier run using equation (232); these are denoted by the solid bars. The binning
of states of length � in figure 29 shows that flatGAS effectively performs a random walk on
� ∈ [0, nmax], producing the flat histogram indicated by the open bars.

Estimates for cn obtained by an endpoint atmospheric implementation of flatGAS is
displayed in table 3. These data were taken from an implementation of flatGAS that realized
2000 sequences with nmax = 1000, each sequence of length 5 × 108.

The flat histogram version of GAS is in every respect, such as GAS, GARM and
flatGARM, an approximate enumeration method.
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Table 3. Approximate enumeration with flatGAS.

n cn Estimate

0 1 0.999 96
1 4 3.999 87
2 12 12.000 17
3 36 36.003 57
4 100 100.021
5 284 284.068
6 780 780.206
7 2172 2172.58
8 5916 5917.77
9 16 268 16 273.5

10 44 100 44 117.1
11 120 292 1.203 43 × 105

12 324 932 3.250 92 × 105

13 881 500 8.819 74 × 105

14 2374 444 2.375 69 × 106

15 6416 596 6.419 57 × 106

16 17 245 332 1.725 31 × 107

17 46 466 676 4.648 99 × 107

18 124 658 732 1.247 19 × 108

19 335 116 620 3.352 87 × 108

20 897 697 164 8.981 95 × 108

21 2408 806 028 2.410 12 × 109

22 6444 560 484 6.448 16 × 109

23 17 266 613 812 1.727 59 × 1010

24 46 146 397 316 4.616 66 × 1010

25 123 481 354 908 1.235 28 × 1010

12. The pivot algorithm

The pivot algorithm [92, 102] is a dynamic Monte Carlo algorithm implementing neutral
pivot atmospheric elementary moves (see figure 19) to sample fixed length walks along a
Markov chain. The state space of the algorithm is the set of walks of given length n, with
two walks considered equivalent if the first is a translation of the second in the hypercubic
lattice.

The elementary moves of the pivot algorithm are called pivot moves and are implemented
on a walk s by selecting a pivot v to cut s into two subwalks s0 and s1. Without loss of
generality, one may suppose that s1 is shorter than s0. The shorter subwalk s1 is subjected to
a uniformly selected symmetry operation P from the point symmetry group of the hypercubic
lattice (in three dimensions this is the octahedral group, and in d dimensions it has order 2dd!)
to obtain the subwalk P(s1) = s ′

1. By translating s ′
1 to reconnect it with s0 at v, the walk

s ′ = s0vP (s1) = s0vs ′
1 is obtained as illustrated in figure 11.

If s ′ is a self-avoiding walk, then it is accepted with probability one as the next state in the
Markov chain, otherwise, s is read again as the next state in the Markov chain. This rejection
technique implies that the algorithm samples along an aperiodic Markov chain.
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It is known that the neutral atmospheric pivot elementary moves of the pivot algorithm
are irreducible on the set of walks of fixed length n (see [102]), and so the pivot algorithm is
ergodic (irreducible and aperiodic).

Observe that the pivot algorithm is also reversible. If s ′ is obtained from s by the
application of an elementary move, then by selecting the same pivot point in s ′ and reversing
the pivot move, it will again produce s. The probability of obtaining s ′ from s in this case
is [2−d/d!]/(n − 1) since the pivot point can be selected from one of (n − 1) possible
vertices, and the elementary move is selected from one of 2dd! possible choices. Thus
Ps→s ′ = Ps ′→s = [2−d/d!]/(n − 1).

On the other hand, if there is no pivot move which will produce s ′ if s is the current state,
then Ps→s ′ = Ps ′→s = 0.

In other words, for any two walks s and s ′ of length n, the transition probabilities of the
algorithm are reversible, and

Ps→s ′ = Ps ′→s . (238)

This shows that the pivot algorithm samples along a symmetric Markov chain in the state
space of self-avoiding walks of length n.

Since the pivot algorithm is both ergodic and symmetric, it follows from the fundamental
theorem of Monte Carlo algorithms that the pivot algorithm samples asymptotically from the
uniform distribution on the state space of walks of fixed length in the hypercubic lattice.

States sampled along a realization of a Markov chain by the pivot algorithm are correlated.
Averages over the states in the Markov chain are asymptotically normally distributed about
their means, and confidence intervals can be determined by calculating autocorrelation times
and variances as set out in section 4.6.

The pivot algorithm is implemented as follows:

Algorithm 12.1 (The pivot algorithm).

(1) Initialize the algorithm with an arbitrary walk s0 of length n.
(2) Choose a pivot v in sn, and identify the shorter subwalk ν into which sn is cut by v.
(3) Update ν by operating on it with a uniformly chosen element of the symmetry group of

the hypercubic lattice. This operation creates a proposed next state s ′.
(4) If s ′ is self-avoiding, then sn+1 = s ′, otherwise sn+1 = sn. Continue from step (2).

The pivot algorithm is an implementation of an elementary move defined by the pivot
neutral atmospheres defined in section 3.2. If (sn, s

′) is a linkage between sn and s ′ defined
by a pivot neutral atmosphere, then the algorithm operates by choosing s ′ uniformly and with
rejection as the next state from the set of walks which have linkages with sn.

It is known that the pivot algorithm converges faster than any other algorithm which
uses local moves involving less than a fixed number of M edges [102]. The integrated
autocorrelation time of the implementation in [102] is τ ∝ O(n) in CPU-time units for
walks of length n. An implementation of the algorithm by Kennedy [86] has an integrated
autocorrelation time estimated to be τ ∼ O(n0.57) in CPU-time units for walks of length n on
the square lattice, and τ ∼ O(n0.85) for walks on the simple cubic lattice.

An even faster implementation of the algorithm was produced in [18]. In this case, the
basic pivot move can be performed in O(log n) CPU-time units, giving an integrated
autocorrelation time of approximately τ ∼ O(n0.19 log n) CPU-time units on the square lattice
and τ ∼ O(n0.11 log n) CPU-time units on the simple cubic lattice. These implementations
were achieved in [18] by noting that the self-avoiding walk can be represented as a binary
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Figure 30. The mean energy per edge of an adsorbing walk of length n = 120 edges in the
square lattice confined to the half-space X � 0. The mean energy is plotted against the fugacity
β = log z and was computed by a multiple Markov chain implementation of the pivot algorithm
for β ∈ [0, 1]. The implementation is of 10 chains equally spaced on the β-axis, and 125 000 000
attempted pivots were made on each chain with data collected every 250 attempts. The resulting
time series of 500 000 points was analysed for each chain to compute the mean energies above.
The data show a transition at βc ≈ 0.55 where the walk adsorbs on the X = 0 line. β is the
fugacity in this implementation and z = eβ is the activity of visits.

tree, where each walk is represented as the concatenation of two sub-walks of roughly equal
length.

The pivot algorithm can be implemented via the Metropolis algorithm (algorithm 4.1)
to sample interacting models of walks. If Zn(β) = ∑

v cn(v)eβv is the partition function
of walks of length n at fugacity β = log z, then the aim is to sample walks from the
Boltzmann distribution in equation (120), where vs is the energy of the walk s of length
n. The implementation follows algorithm 4.1 and if the current state is s and an attempted
pivot proposes t as the next state, then the probability that t is accepted as the next state is
given by

Ps→t = min{[Pβ(t)/Pβ(s)], 1} = min{eβ(vt−vs ), 1}, (239)

where Pβ(s) = eβvs /Zn(β). In other words, if β < 0, then transitions to proposed states with
higher energies are more likely to be rejected.

The implementation of the pivot algorithm with umbrella sampling, or multiple Markov
Chain sampling, on interacting models of walks follows the arguments in sections 4.3.3 and
4.3.4. In this incarnation, the algorithm is very useful in collecting data on critical phenomena
in interacting models of walks, as it can be used to sample over intervals [β0, β1] of the
fugacity β; see for example [77, 145, 147]. In figure 30, a multiple Markov chain Monte Carlo
implementation of the pivot algorithm was used to compute the mean energy of an adsorbing
self-avoiding walk in the square lattice.

12.1. Cut-and-paste algorithms

A generalization of the pivot algorithm leads to cut-and-paste type algorithms for self-avoiding
walks. The underlying idea is similar to pivots: walks in the canonical ensemble are sampled
along a Markov chain using a dynamic Monte Carlo.

Cut-and-paste algorithms for self-avoiding walks are generalizations of the pivot
algorithm. The general elementary move is as follows: cut a given walk of length n into N
pieces or arbitrary length, rotate and reflect each piece independently by applying a symmetry
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Figure 31. The elementary move of the cut-and-paste algorithm for self-avoiding walks. In this
example, the walk is cut into three subwalks, which are reflected or rotated in the lattice, then
shuffled, and then put back together into the next proposed walk.

operation from the point symmetry group of the lattice, and then attempt to reconnect the
pieces in arbitrary order into a single self-avoiding walk. An example of the elementary move
is given in figure 31. If a (non self-intersecting) walk is obtained, then it is the next state,
otherwise the current walk is read again as the next state. This elementary move defines a
cut-and-paste neutral atmospheric statistic on the walk.

13. The Beretti–Sokal algorithm

Grand canonical algorithms for self-avoiding walks implement length-changing atmospheric
moves to sample from a distribution over the lengths of walks along a Markov chain in the
state space of walks of arbitrary length. The simplest such algorithm implements the endpoint
atmospheric moves in figure 12 as elementary moves, and is called the Berretti–Sokal algorithm
[9].

The basic operation is as follows: let s be the current state, and attempt to append an
edge in one of N directions with probability P+, or delete the last edge of the walk, if it has
length bigger than zero, with probability P−, where P+ + P− = 1. A suitable choice for the
probabilities is given by

P+ = Neβ

1 + Neβ
and P− = 1

1 + Neβ
. (240)

The transition probabilities of the algorithm is given by

Ps→t =

⎧⎪⎪⎨
⎪⎪⎩

eβχt

1 + Neβ
, if an edge is added to s,

1

1 + Neβ
, if an edge is removed from s,

(241)

where χt = 1 if t is a self-avoiding walk, and χt = 0 otherwise.
Since the coordination number of the hypercubic lattice is 2d, one choice is N = 2d

in P+ and P−, and whenever an edge is added, its direction is selected uniformly from the
available 2d directions. A slight improvement is achieved if N = (2d − 1) and backsteps
are excluded from the choices for a positive atmospheric move. If a proposed positive move
causes an intersection in a proposed next state, then the move is rejected and the current state
is read again in the sequence of sampled states.

The algorithm may be implemented as follows:

Algorithm 13.1 (The Beretti–Sokal algorithm).

(1) Initialize the algorithm by choosing the first state s0 to be the vertex at the origin. Then
the length of s0 is zero. Define the parameter β.

(2) Let sn be the current state. Determine the probabilities P+ and P− in equation (240) and
use them to determine the nature of the next move.
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(3) If the next move is a negative endpoint atmospheric move, then delete the last edge in the
algorithm to obtain the state sn+1. Continue at step (2).

(4) If the next move is a positive endpoint atmospheric move, then choose one of the available
lattice edges incident with the last vertex, and append it to the walk. If the result is a
self-avoiding walk, then accept this as sn+1, and continue from step (2). It the proposed
state is not self-avoiding, then reject it, and put sn+1 = sn, and then continue from
step (2).

The algorithm samples along a Markov chain in the state space of walks of arbitrary length
from the origin. The parameter β can be adjusted to control the average length of the walk in
the simulation.

The probability of a positive endpoint atmospheric move is P+, and the probability of
a negative atmospheric move is P−. In other words, if the walk t is obtained from s, and
|t | = |s| + 1, then Ps→t = eβPt→s since Ps→t = eβ/(1 + Neβ) while Pt→s = 1/(1 + Neβ).
Hence it follows that Ps→t = eβ(|t |−|s|)Pt→s or

eβ|s|Ps→t = eβ|t |eβPt→s . (242)

This is the condition of detailed balance for the algorithm, and it proves that the algorithm
samples along a Markov chain asymptotically from the Boltzmann distribution

Pβ(s) = eβ|s|∑
s eβ|s| = eβ|s|∑

n cneβn
. (243)

This distribution is normalizable only if
∑

n cne
βn < ∞, or in other words, if −∞ <

β < − limn→∞[log cn]/n = − log μ, where μ is the growth constant of self-avoiding walks
defined in equation (2). In other words, the mean length of walks sampled by the Berretti-
Sokal algorithm increases without bound if β > − log μ, in which case the sampling is not
from a stationary distribution.

In practical applications there is a trade-off between sampling longer walks, and efficiency
in the algorithm. If β is fixed close to −log μ, then the algorithm samples walks with
longer average length, but along a time series with longer autocorrelations. Smaller (more
negative) values of β reduce the autocorrelations, but produce samples of walks with shorter
average length. In [9], it is argued that the autocorrelation times τ have order at least
τ � O(〈n〉2) in a simulation where the average length of the walks is 〈n〉. This was improved
to O(〈n〉2) � τ � O(〈n〉1+γ ) in [139, 140].

Extensions of the Berretti–Sokal algorithm (by adding more than one edge at a time), and
its application to interacting models of walks were given in [11].

The Berretti–Sokal algorithm can also be implemented using the Metropolis algorithm:
append an edge to the last vertex of the current walk sn. If the edge coincides with the last
edge of the walk, then a negative atmospheric move is performed. Otherwise, the new edge
extends the walk. If the new object is a self-avoiding walk t, then sn+1 = t with probability
eβ , otherwise sn+1 = sn.

If the length of sn is larger than zero, then the probability of negative atmospheric move
is 1/2d, and the probability of extending the walk sn in a particular direction by a positive
atmospheric move is eβ/2d. In other words, if the walk t can be obtained from s by a
positive atmospheric move, then s can be obtained from t by a negative atmospheric move and
Ps→t = [eβ/2d] = eβPt→s so that the condition of detailed balance is given by

eβ|s|Ps→t = eβ|t |Pt→s (244)

and it follows that for β < − log μ the algorithm samples from a stationary Boltzmann
distribution as above. This implementation is less efficient than the implementation above,
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Figure 32. The elementary moves of the BFACF algorithm are induced by plaquette atmospheres.
In this example, the marked plaquette incident with the walk induces a local move on the walk,
either increasing or decreasing the length of the walk by two, or if the plaquette is a neutral
atmospheric plaquette, leaving the length of the walk unchanged.

but can be easily adapted to sample interacting walks using umbrella sampling or multiple
Markov chain sampling.

The mean length of walks sampled by the Berretti–Sokal algorithm depends on the value
of β and is given by

〈|s|〉β =
∑

n n cne
βn∑

n cneβn
. (245)

That is, the closer β is fixed to − log μ, the longer the walks. Sampling longer walks inevitably
leads to a critical slowing down in the algorithm: the autocorrelation times become long and
the measured data more uncertain. Thus β must be selected with some care; close enough
to − log μ to sample walks of sufficient length, but not too close to make data unreliable
due to long autocorrelation times. A more generalized implementation of the Berretti–Sokal
algorithm can be found in [113]: this implementation adds or removes up to �n edges in each
attempted iteration from the walk by determining generalized endpoint atmospheres.

14. The BFACF algorithm

The BFACF algorithm [4, 8] is a dynamic Monte Carlo algorithm which samples self-avoiding
walks with fixed endpoints along a Markov chain by implementing the plaquette atmospheric
moves in figure 13.

The plaquette atmospheres induce three kinds of elementary moves, namely one positive
atmospheric move which increases the length of the walk by 2, a neutral atmospheric move,
and a negative atmospheric move which decreases the length of the walk by 2. In figure 32,
an example of BFACF-sampling is given.

The elementary moves of the BFACF algorithm do not move the endpoints of the walk,
and these are fixed in the lattice. Generally, these elementary moves are not irreducible on the
state space S0x of walks with fixed endpoints 0 (the origin) and a lattice site x [101]. In the
square lattice the moves are irreducible on S0x for any fixed x [100]. In the cubic lattice the
moves are irreducible whenever ‖x‖∞ � 2 [70].

Implementing the algorithm proceeds as follows: let sn be the current walk of length |sn|
edges. Choose with uniform probability an edge S in sn, and enumerate the 2d −2 atmospheric
plaquettes incident with S. Some of the atmospheric plaquettes may be positive, some neutral
and at most one may be negative. Choose, randomly, one of the 2d −2 atmospheric plaquettes
such that a (particular) positive atmospheric move is carried out with probability P+, a negative
atmospheric move is carried out with probability P− and a (particular) neutral atmospheric
move is carried out with probability P0. This produces the state s ′

n, and if it is a self-avoiding
walk, then sn+1 = s ′

n, otherwise sn+1 = sn.
It remains to specify the probabilities P+, P− and P0. Generally, the possible 2d − 2

atmospheric plaquettes have a probability attached, and the sum of these probabilities cannot
exceed 1. The following cases can be enumerated:
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• All 2d − 2 atmospheric plaquettes incident with S are positive. Thus (2d − 2)P+ � 1.
• One atmospheric plaquette incident with S is neutral; the remaining are all positive. This

requires that (2d − 3)P+ + P0 � 1.
• Two atmospheric plaquettes incident with S are neutral; the remaining are all positive.

This requires that (2d − 4)P+ + 2P0 � 1.
• Finally, one atmospheric plaquette incident with S is negative; the remaining are all

positive. This implies that (2d − 3)P+ + P− � 1.

One of these conditions (the second) is redundant, and the remaining three only provide
a restriction on the probabilities. If in addition, one requires that P+ = e2βP−, then in two
dimensions the probabilities can be maximized subject to the constraints above to give

P+ = e2β

1 + e2β
, P− = 1

1 + e2β
and P0 = 1

2
. (246)

This is the optimal implementation of the algorithm in the square lattice.
In three and higher dimensions the situation is more complicated. The relations

(2d − 3)P+ + P− � 1 and P+ = e2βP− imply that

P+ � e2β

1 + (2d − 3)e2β
. (247)

At the same time, one must have (2d − 4)P+ + 2P0 � 1. Maximizing P+ and solving for P0

gives P0 = (P+ + P−)/2 where P+ = e2βP−. This solution gives the standard choices for the
probabilities in d � 3:

P+ = e2β

1 + (2d − 3)e2β
, P− = 1

1 + (2d − 3)e2β
, and P0 = 1 + e2β

2(1 + (2d − 3)e2β)
.

(248)

With these choices of the transition probabilities, the algorithm can be implemented as
follows:

Algorithm 14.1 (The BFACF algorithm).

(1) Initialize the algorithm by choosing the first walk s0 to be a walk with given (fixed)
endpoints x and y. Then the length of the walk is at least the length of the shortest lattice
path between x and y. Define the parameter β.

(2) Let sn be the current walk. With uniform probability 1/|sn|, choose an edge S in sn.
Enumerate the 2d − 2 atmospheric plaquettes incident with S.

(3) Execute one of the atmospheric moves such that a particular positive atmospheric move is
performed with probability P+, a particular negative atmospheric move is performed with
probability P− and a particular neutral atmospheric move is performed with probability
P0. The probabilities P0, P+ and P− are given in equation (246) in the square lattice, and
in equation (248) in the cubic and hypercubic lattices. This gives a proposed walk s ′

n. If
the proposed walk is not self-avoiding, then s ′

n = sn. If the probabilities P∗ sum up to
less than one, then s ′

n = sn in the event that no atmospheric move is performed.
(4) Put sn+1 = s ′

n to find the next state, and continue at step (2) above.

The transition probability of obtaining a walk t from a given walk s, Ps→t , is given by

Ps→t =
⎧⎨
⎩

[P+/|s|], if |t | = |s| + 2,

[P−/|s|], if |t | = |s| − 2,

[P0/|s|], if |t | = |s|,
(249)
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since the edge S in step (2) is chosen with probability 1/|s|. These transition probabilities
satisfy the condition of detailed balance given by

|s| Ps→t = |t |Pt→s . (250)

This shows that the algorithm samples asymptotically from the distribution

Pβ(s) = |s|eβ|s|∑
t |t |eβ|t | = |s|eβ|s|∑

n n cn(x)eβn
, (251)

where cn(x) is the number of self-avoiding walks of length n with endpoints the origin 0 and
the fixed lattice site x. This is not the canonical Boltzmann distribution over the state space
S0x of walks, and the denominator is finite only if β < − log μ where μ is the growth constant
of walks defined in equation (2).

A simpler implementation of the BFACF-algorithm uses the Metropolis algorithm. In
this case steps (2) and (3) above are modified as follows: choose an edge S with uniform
probability 1/|sn| in the current walk sn and translate the edge in a (uniformly chosen) normal
direction (there are 2d −2 possible choices) while inserting or deleting edges to keep the walk
connected. If the resulting object is a self-avoiding walk s ′

n of length |s ′
n| edges, then accept

it with probability min{1, eβ(|s ′
n|−|sn|)} as the next state sn+1. Otherwise, put sn+1 = sn. In this

implementation one can show that the condition of detailed balance is given by equation (250),
and if β < − log μ, then the algorithm samples asymptotically from the distribution Pβ(s) in
equation (251).

Further generalizations of the BFACF algorithm are available in [119] and its
generalization to a dynamic Monte Carlo algorithm for sampling ribbons in the cubic lattice
appeared in [118].

The mean value of an observableO over the realization of a Markov chain by the algorithm
is given by

〈〈O〉〉β =
∑

s |s|O(s)eβ|s|∑
s |s| eβ|s| . (252)

Estimates of canonical Boltzmann mean values can be determined by the ratio estimate

〈O〉β = 〈〈O/|s|〉〉β
〈〈1/|s|〉〉β

. (253)

Since the algorithm is ergodic with detailed balance condition in equation (250) over the state
space S0x of walks with fixed endpoints 0 and x in two dimensions and ‖x‖∞ � 2 in d � 3,
this ratio estimate convergences to 〈O〉β in probability with the length of the realized Markov
chain.

The mean length of walks realized by the algorithm depends on β and is given by
〈〈|s|〉〉β . Since cn = μn+o(n), if follows that as β approaches −log μ, the longer the average
length of walks sampled by this algorithm become. This leads to a critical slowing down
as β ↗ − log μ, and arguments in [16, 100] suggest that the integrated autocorrelation time
diverges as τ � C 〈|s|〉4ν where ν is the metric exponent of the model and C is a constant. In
the square lattice 4ν = 3 and in the cubic lattice 4ν ≈ 2.4.

Generalizations of the BFACF-algorithm can be made by adding other atmospheric moves
to the collection of plaquette atmospheric moves. These may include neutral pivot atmospheric
moves, which do lead to an improvement in the critical slowing down of the algorithm
[118, 119]. Generally, additions of alternative positive or negative atmospheric moves will
follow the arguments outlined in [11], or can be done simply by using a Metropolis-style
rejection technique.
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Figure 33. The plaquette atmospheres of a polygon. Positive atmospheric plaquettes are denoted
by a +, negative atmospheric plaquettes by − and neutral atmospheric plaquettes by O. In this
example, a

p
+ = 10, a

p

0 = 8 and a
p
− = 2.

15. Monte Carlo simulations of lattice polygons

In this section, we consider briefly the application of the algorithms in the previous sections
to lattice polygons.

In bipartite lattices such as the hypercubic lattice in two and larger dimensions, all polygons
have even lengths. The existence of a growth constant μ is demonstrated by equations (4) and
(5), and these limits exist only if they are taken through even values of n. The scaling of pn

for even values of n is given by equation (25).
As in the case of walks, Monte Carlo simulation of lattice polygons relies on elementary

moves which one may define in terms of polygon atmospheres—this was set out in [78]. The
implementation of a Monte Carlo algorithm proceeds by first selecting a set of elementary
moves, and then by defining dynamics which implements the elementary moves to sample
polygons.

If S is a collection of polygons, then a set of elementary moves is irreducible on S if
for any two members of S communicates with one another along a sequence of elementary
moves. Irreducibility is a tricky issue in the cubic lattice for some algorithms, since polygons
may be non-trivial knots, and this topological constraint may cut S into distinct ergodicity
classes.

We proceed by defining a number of polygon atmospheres which we shall use in
constructing algorithms. These atmospheres are by no means exhaustive, and may be mixed
or adapted or even generalized to enhance the sampling or to design even more general
algorithms.

(1) Plaquette atmospheres in polygons. Positive, neutral and negative atmospheric plaquettes
can be defined on a polygon in exactly the same way as they were defined for walks. A
�-conformation of three edges in a polygon is a negative atmospheric plaquette. If an
edge in a polygon can be replaced by three edges in a �-conformation to obtain a new
polygon, then a positive atmospheric plaquette has boundaries the given edge together
with the three edges in the �-conformation. Two adjacent edges at 90◦ with one another
and bounding a unit square with exactly two edges and three vertices in the polygon is a
neutral atmospheric plaquette.

Atmospheric plaquettes on a polygon are indicated in figure 33. The number of
positive atmospheric plaquettes is denoted by a

p
+ and this is the size of the positive
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Figure 34. The positive generalized atmosphere of a polygon. Two parallel edges (a and b) are
incident on a pair of vertices (marked by O) on the left and the part of the polygon between these
vertices is translated one step in the direction of a and b (this is indicated by the dotted line).
If the resulting object on the right is a polygon, then the pair (a, b) is part of the generalized
atmosphere of the polygon, and we call the pair (a, b) a pair of positive generalized atmospheric
edges of the polygon on the left. The positive generalized atmosphere of the polygon is the set of
all such pairs of edges. Negative generalized atmospheric edges are defined as the opposite of the
positive generalized atmospheric edges: by contracting the pair (a, b) in the right-hand polygon,
the polygon on the left is obtained. Thus, (a, b) is a pair of negative atmospheric edges in this
polygon. The negative generalized atmosphere of the polygon is the set of all such pairs of edges.
A neutral generalized atmosphere can also be defined in a similar way by contracting one edge and
adding a second to produce a new polygon of the same length.
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Figure 35. A pivot move in a lattice polygon. The segment of the polygon between the pivots a
and b is reflecting through the centre � of the line segment ab. If the pivots a and b are on the same
lattice axis, or on another symmetry line or plane of the lattice, then line and plane reflections, and
rotations, from the octahedral group can be used to pivot parts of the polygon. The total collection
of pivots on a polygon forms the neutral pivot atmosphere of the polygon.

plaquette atmosphere of the polygon. Similarly, a
p
− and a

p

0 are the sizes of the negative
and neutral plaquette atmospheres.

(2) Generalized atmospheres in polygons. Consider two vertices in a polygon, and two
parallel edges (a, b) incident with the vertices. An example is given in figure 34. If
the polygon is cut into two segments at the vertices, and the pair of edges is inserted,
then the outcome may be a lattice polygon. In this case, we call (a, b) a pair of positive
generalized atmospheric edges. The effect of this construction is that a pair of vertices is
replaced by a pair of parallel edges.

Conversely, consider (a, b) to be a pair of parallel edges in a polygon. If these edges
are contracted to vertices, and the resulting object is still a polygon, then (a, b) is a pair
of negative generalized atmospheric edges. A neutral generalized atmosphere may be
defined by inserting one edge and contracting another.

(3) Neutral pivot atmospheres for polygons. A pivot move is implemented as follows on
a polygon: Choose two pivot points a and b (see figure 35) and note that these cut
the polygon into two segments. Choose the shorter of the two segments and operate
on it with an element of the lattice symmetry group selected such that the operation
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leaves the endpoints of the segment unchanged. If the resulting object is a polygon (thus
self-avoiding), then we say that the shorter segment was pivoted about a and b.

Observe that in hypercubic lattices there at least two pivot moves which are always
possible; for any choices of the pivoting points a and b: the first is the identity move, and
the second is an inversion; a point reflection of the segment through the centre of the line
segment ab connecting the pivots. In figure 35 an inversion is illustrated.

Other pivots can be performed if a and b are on a line of symmetry or a plane of
symmetry of the lattice. If a and b are on the same line L inclined at 45o with the X-axis in
the square lattice, then possible pivot moves include an inversion, and reflections through
L and through the bisector of L.

The collection of all possible pivot moves on a polygon forms the neutral pivot
atmosphere of the polygon.

We next consider four algorithms for polygons. These include two kinetic growth type
algorithms (GARM and GAS) [131], and two dynamic algorithms, one canonical (the pivot
algorithm, see [28]) and one grand canonical (the BFACF algorithm [4, 8]).

15.1. GARM for polygons in the square lattice

GARM for polygons is implemented similarly to GARM for walks as in section 10, and one
can use either plaquette or generalized polygon atmospheres. GARM is then a kinetic growth
algorithm for polygons in analogy with the Rosenbluth method (see section 6) and PERM (see
section 9) for walks.

In figures 33 and 34, the definitions of plaquette and generalized polygon atmospheres
are given, and the implementation of these in a GARM algorithm for polygons will be given
below. The plaquette atmospheres induce BFACF-moves on a polygon [4, 8].

Define S to be the state space of all (unrooted) polygons. The smallest polygon is the unit
square of length 4 and all polygons in the square lattice will have even length.

The irreducibility of atmospheric moves on S is an important ingredient in the construction
of GARM on polygons. For plaquettes atmospheres the following is known:

Theorem 15.1. The set of BFACF-moves induced by the plaquette atmospheres in figure 33
is irreducible in the square lattice. In particular, by applying negative and neutral plaquette
atmospheric moves, any polygon can be reduced to the minimal polygon of length 4 edges in
a finite number of steps.

The proof of this theorem is a special case of the proof of theorem 9.7.2 in [102]. The
corollary to the last theorem is that any polygon of length n in the square lattice can be grown
from a polygon of length 4 by applying positive and neutral BFACF moves. In other words,
a GARM-style algorithm can be defined by growing polygons from the unit square polygon
by applying positive and neutral plaquette atmospheric moves. Since every BFACF move is
also a generalized atmospheric move in a polygon, it follows that a GARM-style algorithm
for square lattice polygons can also be defined by growing polygons with positive and neutral
generalized atmospheres [131].

This situation breaks down in the cubic lattice, since knotted conformations obstruct the
growing of any knotted polygon by using BFACF or generalized atmospheric moves. Thus,
we limit the discussion for the remainder of this section to square lattice polygons.

Consider a polygon s and its associated generalized atmospheric statistics a
g
+(s), a

g

0 (s) and
a

g
−(s). A new polygon s ′ can be constructed from s by implementing a positive atmospheric

move on s, as in figure 34. In this case s ′ is a successor of s, and |s ′| = |s| + 2. We call s a
predecessor of s ′.
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Consider the following sampling scheme in the state space S of square lattice polygons.
Let φ0 be the polygon of length 4 and be the initial state in a sequence φ. Generate states
(polygons) φ1, φ2, . . . by applying positive or neutral atmospheric moves: φj is obtained from
φj−1 by a uniformly chosen positive or neutral atmospheric move on φj−1.

This generates a sequence φ = φ0φ1 · · · φN of length |φ| = N + 1 in S where the state
φj is a polygon. Since the state φj is obtained from φj−1 by uniformly selecting a randomly
chosen positive or neutral atmospheric move, the conditional probability that φj follows φj−1

is

P(φj |φj−1) = 1

a
g
+(φj−1) + a

g

0 (φj−1)
. (254)

The probability to sample a given sequence φ is therefore

Pr(φ) =
|φ|−1∏
j=1

P(φj |φj−1) =
|φ|−1∏
j=1

[
1

a
g
+(φj−1) + a

g

0 (φj−1)

]
. (255)

The final state of the sequence φ is a specific state φN ≡ τ , and the probability that a sequence
terminates in the state τ is given by

Pr(τ ) =
∑
φ→τ

|φ|−1∏
j=1

[
1

a
g
+(φj−1) + a

g

0 (φj−1)

]
, (256)

where the sum is over all sequences φ in s which starts as the trivial state φ0 (the square
polygon of length four), and with final state τ .

As in the case of GARM for walks, the key to the algorithm is to assign a weight W(φ)

to each sequence: it is appropriate to define this by

W(φ) =
|φ|−1∏
j=1

[
a

g
+(φj−1) + a

g

0 (φj−1)

a
g
−(φj ) + a

g

0 (φj )

]
. (257)

Each factor in this product is the ratio of the atmospheres of the current state, divided by the
atmospheres of the next state. This choice of the weight leads to lemma 10.1. In this case, it
follows that the mean weight of sequences ending in τ is one:

〈W(φ)〉 =
∑
φ→τ

W(φ)P r(φ) = 1 (258)

and the proof proceeds as in lemma 10.1. The counting formula in equation (201) generalizes
to ∑

|τ |=n

〈W(φ)〉 =
∑
φ→τ
|τ |=n

|φ|−1∏
j=1

[
1

a
g
−(φj ) + a

g

0 (φj )

]
= pn. (259)

Thus, GARM is again an approximate enumeration algorithm, and can be used to determine
pn.

The implementation of GARM for polygons is similar to the implementation for walks in
algorithm 10.2, with the added observation that a trapped sequence cannot occur with either
BFACF or generalized atmospheric moves.

Algorithm 15.2 (GARM for polygons).

(1) Let N be the length of the sequence to be generated and put the weight W = 1. Let φ0 be
the unit square polygon of length 4. Determine the positive and neutral atmospheres of
φj . Since a

g

0 (φ0) = 0, determine φ1 by uniformly selecting a positive atmospheric move
and executing it, and put j = 1.
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(2) Determine (positive, neutral and negative) atmospheres of φj . Update the weight W by
multiplying it with

(
a

g
+(φj−1) + a

g

0 (φj−1)
)/(

a
g
−(φj ) + a

g

0 (φj )
)
.

(3) Select a positive or neutral atmospheric move uniformly from those available on φj and
construct φj+1 by executing it.

(4) Increment j → j + 1. If j < N , then determine the next state by going to step (2). If
j = N then a sequence of length N states and weight W have been generated. Continue
by starting a new sequence at step (1) or terminate the algorithm.

This is the simplest implementation of GARM for polygons in the square lattice and it gives
a scheme for the kinetic growth and approximate enumeration of polygons.

It is possible that estimates of the weight W along realized sequences φ in a simulation
will have large variance. This undermines the statistics of the algorithm and similar to PERM,
a pruning and enrichment step in the algorithm may be needed to improve the sampling.
Eventually, this approach will give a flat histogram version of GARM for square lattice
polygons (flatGARM), as described in section 10.

A thermal implementation of GARM is similarly obtained by computing estimates of the
partition function at an activity z = eβ :

Zest
n (z) = 1

N

N∑
k=1

W
(
φk

j

)
zE(φk

j ) = 〈WzE〉j , (260)

where φk
j is the j th state of length n in the kth sequence φk . In algorithm 10.3 the calculation

of r is replaced by

r = W(φj )z
E(φj )

〈WzE〉j (261)

for state φj . The rest of the implementation is unchanged. This will enrich and prune states
such that a flat histogram over the partition function at activity z is obtained. An alternative
approach to this is to implement a microcanonical version of GARM as in algorithm 10.4.

15.1.1. GARM for polygons in three dimensions. The implementation of GARM for polygons
in three dimensions (the cubic lattice) is at this time not resolved and remains an open question.
The selection of atmospheric moves similar to plaquette and generalized atmospheres for
cubic lattice polygons seems unproblematic, but proving that any polygon can be reached via
a sequence of positive and neutral atmospheric moves (as was done in theorem 15.1) remains
unresolved, even if the model is restricted polygons in the class of unknotted polygons. This
problem can be solved by adding neutral pivot atmospheres into the problem—since these
moves are known to be irreducible on polygons of fixed length [99], it is then possible to
prove that positive and neutral atmospheres can be used to generate any polygon in the cubic
lattice, starting from the unit square. Unfortunately, computing pivot neutral atmospheres is
computationally expensive, and leads to a significant reduction in the effectiveness of such a
proposed algorithm.

15.2. Generalized atmospheric sampling of polygons

Generalized atmospheric sampling on the atmospheres of polygons can similarly be
implemented to sample polygons along a sequence φ. This method generalizes GARM
by implementing negative atmospheric moves in addition to neutral and positive atmospheric
moves.

86



J. Phys. A: Math. Theor. 42 (2009) 323001 Topical Review

The implementation follows a general outline similar to walks. Consider a polygon s
together with its associated atmospheric statistics a

g
+(s), a

g

0 (s) and a
g
−(s) of positive, neutral

and negative atmospheres. A new polygon s ′ can be constructed from s by selecting a
positive, neutral or negative atmospheric move, and then constructing s ′ by implementing the
atmospheric move by addition or deletion of edges, or by changing the conformation of s via
a neutral atmospheric move. In this case, a successor s ′ is obtained; we call s the predecessor
of s ′. The rules for selecting an atmospheric move will be explained below.

Let φ0 be an initial state in the algorithm. We say that φ0 is in level 0. Successors of φ0

are states φ1 in level 1 which can be reached from φ0 by implementing a (positive, neutral or
negative) atmospheric move. The state φ0 in level 0 is also the predecessor of the states φ1 in
level 1, and the relationship between predecessors and successors is graphically illustrated in
figure 28.

Similarly, successors of a state φj in level j are determined by considering all states in
level j + 1 which can be obtained from φj by implementation of an atmospheric move. In this
way, states φj can be sampled in level j by recursively selecting a successor of the current
state starting at the state φ0. φ0 is the source state at level 0 of the sequence φ = φ0φ1, . . . , φN

of length N.
The general implementation now follows the steps in GAS for walks, by selecting a set

of atmospheric moves. The BFACF moves are suitable in the square lattice since they are
irreducible on the set of all polygons in the square lattice [102]. In three dimensions, the
BFACF moves are suitable for the GAS-sampling of polygons of fixed knot type in the cubic
lattice. This follows from the next theorem:

Theorem 15.3. The irreducibility classes of the BFACF moves for unrooted polygons in the
cubic lattice coincide with the knot types of the polygons as closed simple curves in three
dimensions.

The proof of theorem 15.3 can be found in [80]. The algorithm proceeds by sampling
states (polygons) in a sequence in the state space S. The state φj+1 is obtained from φj by
implementing an atmospheric move as follows: introduce the parameter β (possibly dependent
on the length of state φj ) and perform atmospheric moves with probabilities

P+(positive atmospheric move) = βa
g
+(φj )

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

, (262)

P0(neutral atmospheric move) = a
g

0 (φj )

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

, (263)

P−(negative atmospheric move) = a
g
−(φj )

a
g
−(φj ) + a

g

0 (φj ) + βa
g
+(φj )

, (264)

where in particular βj is dependent on the level j , and may be updated between realizations
of sequences, and where these probabilities are normalized to sum up to unity.

A maximum length on the polygons may be imposed on the algorithm by defining the
positive atmosphere of polygons of length nmax to be zero. In this event, irreducibility of the
algorithm (if its atmospheric moves include BFACF-moves) follows from theorem 15.1.

Generally, the average length of polygons in the sequence may be controlled by the
parameter β. If one fixes

β� =
〈
a

g
−(φ)

〉
�〈

a
g
+(φ)

〉
�

(265)
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Table 4. Approximate 2D polygon enumeration with GAS.

n cn Estimate

4 1 1
6 2 1.999 367
8 7 6.995 924

10 28 27.996 66
12 124 123.958
14 588 587.738
16 2938 2937.38
18 15 268 15 276.0
20 81 826 81 881.0
22 449 572 449 554
24 2521 270 2.519 19 × 106

26 14 385 376 1.436 33 × 107

28 83 290 424 8.307 37 × 107

30 488 384 528 4.864 34 × 108

32 2895 432 660 2.882 31 × 109

34 17 332 874 364 1.725 18 × 1010

36 104 653 427 012 1.041 98 × 1011

38 636 737 003 384 6.333 37 × 1011

40 3900 770 002 646 3.871 527 × 1012

for each state φ of length �, then the probability of stepping to the next level via a positive
atmospheric step (and increasing the length of the polygon) is on average equal to the
probability of stepping to the next level via a negative atmospheric step (and decreasing
the length of the walk). This change will produce a flat histogram on the length � of the
states sampled by GAS in the interval (4, 6, . . . , nmax). This defines the flatGAS algorithm on
polygons and its implementation is given by algorithm 11.2.

In table 4, estimates of pn obtained by an implementation of flatGAS using plaquette
atmospheres are given. In this simulation, nmax = 40 while 50 sequences of length 5000 000
each were generated, and average weights were computed to determine estimates of pn.

15.3. The pivot and cut-and-paste algorithms for polygons

The pivot algorithm for polygons uses a neutral pivot atmospheric move (illustrated in
figure 35) as an elementary move. The algorithm is implemented by uniformly choosing
two vertices as pivots, and then attempting a pivot by choosing a pivot move from those
possible with uniform probability. If the resulting object is self-avoiding, then it is accepted
by the algorithm, otherwise it is rejected and the current polygon is again read as the next
state.

The rotations and reflections of parts of the polygon between two pivots are randomly
chosen from the symmetry group of the lattice, but are constrained by the orientation of the
pivots. Each such operation must leave the pivots unchanged or reflect them into one another.
In this context, there is at least one elementary move which can be performed for arbitrary
oriented pivots: this is the inversion, or the reflection of a segment of the polygon through
the origin which is located at the centre of mass of the pivots: a vertex with coordinates
(X, Y, . . . , Z) is reflected to (−X,−Y, . . . ,−Z). This is the move illustrated in figure 35.
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Other possible elementary moves include reflections through and rotations about lattice
axes, reflections through lattice planes normal to the displacement vector between pivots, or
through places which contains the pivots, and reflections and rotations about axes and planes
inclined at 45◦ with lattice axes, and so forth. In d dimensions, there are 2dd! possible moves,
but at every step only those which keep the pivots invariant will be considered as possible
moves.

The irreducibility properties of the pivot algorithm in d dimensions are well understood.
We give this in the following theorem due to Madras et al [99].

Theorem 15.4. The pivot algorithm for polygons is irreducible if the set of elementary
moves includes inversions, rotations by 90◦ about lattice axes, and reflections through the line
bisecting the vector between the pivot points.

The implementation of the algorithm is as follows:

Algorithm 15.5 (The pivot algorithm for polygons).

(1) Let s1 be the initial polygon of length n.
(2) Suppose that sj is the current polygon. Choose two pivots v1 and v2 uniformly in sj .
(3) Determine the shorter subwalk P between the two pivots and determine the vector

V = v2 − v1.
(4) Perform a pivot (selected with uniform probability from a list of possible pivots) on P

such that v1 and v2 are invariant or are reflected into one another, subject to the following:
(a) If V is parallel to a line inclined at 45◦ with a lattice axis, then include a reflection

through the line bisecting V and an inversion in the list of possible pivots.
(b) If V is parallel to a lattice axis, then include a rotation through 90◦ about V and an

inversion in the list of possible moves.
(c) Otherwise, include an inversion (a point reflection through the midpoint of V in the

list of possible moves.
(5) If the resulting object is a polygon, then take it as the state sj+1. Otherwise it has a

self-intersection and sj+1 = sj .
(6) Increment j by 1 and stop if the time series of sampled polygons is long enough.

Otherwise, continue by starting at step (2).

The pivot algorithm is very efficient in sampling polygons in the canonical (fixed length)
ensemble. It can be implemented via the Metropolis algorithm to sample polygons in an
interacting model. Umbrella sampling and multiple Markov chain Monte Carlo sampling
follow the same implementation as those algorithms are implemented with the pivot algorithm
for walks.

In figure 36, a time series generated by the pivot algorithm on square lattice polygons is
displayed. The size of the negative plaquette atmosphere of the polygons where tracked every
30 attempted pivots. The series is correlated, but time series analysis can be used effectively
to determine means and variances of such data.

A generalization of the pivot algorithm for polygons is obtained as follows: instead of
selecting two pivots, select M pivots and cut the polygon into M subwalks. Reflect or rotate
each subwalk such that its endpoints remain fixed or are reflected into one another. Shuffle
the subwalks and attempt to reconnect the M subwalks into a polygon. Since the displacement
vector between the endpoints of each subwalk fixed, putting the subwalks end-to-end still
closes the walks into a ring. If this is self-avoiding, then the polygon is accepted as the next
state by the algorithm, otherwise it is rejected and the original polygon is read again as the
next state.
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Figure 36. Time series data from a simulation of polygons of length n = 300 using the pivot
algorithm. Plotted is the size of the negative plaquette atmospheric statistic. The data are correlated
and time series analysis can be used to determine means and variances.

Fast implementations of the pivot algorithm for polygons follow from the work of Clisby
in [18]. In this case, the basic pivot move on polygons of length n can be performed in
O(log n) CPU-time units. This implementation of the pivot algorithm should enable accurate
simulations of extremely long self-avoiding polygons.

15.4. The BFACF algorithm

The BFACF algorithm for polygons is implemented by applying the BFACF atmospheric
moves to a polygon. The implementation of the algorithm is similar to the BFACF algorithm
for walks with fixed endpoints in algorithm 14.1. The only difference is that the polygon is
not rooted at endpoints, as the walks were, but is free to float in the lattice as the BFACF
algorithm performs elementary moves on it.

It is known that this algorithm is irreducible in the square lattice [102], but the irreducibility
properties are more complicated in the cubic lattice. The following theorem [80] resolves the
issue in the cubic lattice.

Theorem 15.6. The ergodicity classes of the BFACF-algorithm for unrooted polygons in the
cubic lattice coincide with the knot types of the polygons as closed simple curves in three
dimensions.

Since the ergodicity classes coincide with the knot types of the polygons, this result
implies that knotted polygons of a fixed knot type can be simulated by the BFACF algorithm
(see for example [71, 74, 78, 81]). The first polygon in the Markov chain determines the knot
type of the polygons in the simulation, and the sampling is uniform at each fixed length n while
the distribution over n is given by the stretched Boltzmann distribution first derived for the
BFACF algorithm and walks in section 14. In the case of knotted polygons, this distribution
is given by

Pβ(s,K) = |s|eβ|s|∑
n n pn(K)eβn

(266)
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Figure 37. Time series data on two-dimensional polygons using the BFACF algorithm. Plotted
is the length of the polygon at every 100th iteration. In this simulation eβ = 0.377 < 1/μ =
0.379 . . . . Increasing β typically leads to increased correlations, but even in this display the data
have large correlations and long series must be generated to determine means and variances.

in the cubic lattice, where pn(K) is the number of (unrooted) polygons of length n and knot
type K. In the square lattice, and in hypercubic lattices with dimensions bigger than three, the
algorithm is irreducible and the distribution is

Pβ(s) = |s|eβ|s|∑
n n pneβn

, (267)

where pn is the number of (unrooted) polygons of length n. Estimates of canonical Boltzmann
mean values can be determined by the ratio estimate in equation (253).

Critical slowing down occurs in this algorithm as β ↗ 1/μ, and arguments in [102]
suggest that the integrated autocorrelation time diverges as τ � C · 〈|s|〉4ν where ν is the
metric exponent of the model and C is a constant. In the square lattice 4ν = 3 and in the cubic
lattice 4ν ≈ 2.4.

In figure 37, the length of a two-dimensional square lattice polygon is plotted in a time
series in a BFACF simulation with eβ = 0.377. This time series is quite typical of these
simulations; polygons tend to stay close to their minimal length 4 for extended periods, while
periodically making an excursion to longer lengths before returning. The distribution of the
excursions bounds the autocorrelation time of the time series, and if eβ is close to 1/μ, then very
long series is needed to determine the means and variances of measured quantities. Reducing
β also reduces autocorrelations, but long polygons are then only rarely sampled. Various
schemes are used to improve the sampling at longer lengths while keeping autocorrelations
under control—in particular, mixing the BFACF algorithm with pivot moves improves the
situation; see for example results in [120, 121, 146].

16. Conclusions

There has been significant progress in the Monte Carlo simulation of lattice walks and polygons
(and related structures such as trees and animals) since the invention of the Rosenbluth
algorithm [132] in 1955. Big advances in this field include the invention of the scanning
method [105], the BFACF [4, 8] and pivot algorithms [92, 102] in the 1980s, and PERM [44]
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in the 1990s. The extension of the Rosenbluth method and PERM [44] to GARM [131] and
GAS [79] since 2000 is in all probability not the last words in this area, and even more efficient
algorithms are still to be found.

In contrast, the exact enumeration of walks (see for example [83] and Iwan Jensen’s
website) remains a viable and effective alternative strategy for numerical work on walks and
polygons. While the best numerical estimates for exponents still comes from exact series
analysis, that process is inherently exponential in computational cost. Since Monte Carlo
errors tend to decrease as a power law with increasing computational effort, one would expect
Monte Carlo simulations to eventually become competitive with series results. This may not
be practically so for two reasons. The first is that series has an astonishing advantage in the
current accuracy (μ is known to ten digits in two dimensions [84, 85], while Monte Carlo
simulations give five digits [112]). The second reason is that by clever implementation of
series techniques, the exponential reckoning of the method may be pushed back arbitrarily
(but finitely) far.

Monte Carlo simulations for walks and polygons are on the other hand very useful
in determining phase diagrams of interacting models of walks and polygons as models
of interacting polymers, in particular when implemented in a multiple Markov chain or
microcanonical style.

Overall, the general area of numerical simulations of walks and polygons remains very
active and is further stimulated by the availability since the mid-1980s of cheaper and faster
computing power. Moore’s law and more efficient algorithms, in collaboration with the many
areas in physics and mathematics which intersect this field, will keep the field active for the
foreseeable future.
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